Amrut Sevabhavi Sanstha, Parbhani.

Late Ku. Durga K. Banmeru Science College, Lonar Dist-Buldhana.

Department of Physics

Teaching Plan Session:- 2023-24

Name :- Mr. Sharique S. Shaikh Class:-B.Sc. IIIrd Year /Sem. V Subject:- Physics Paj

		-
per:-5S-Quantum mechanics, Atomic spectroscopy ,Nu	iclear physics , l	hybrid parameters.

Sr.	Month	Name of	Topics	Required	Total
No.		Unit		Lect.	Lect.
1		Unit-I Origin	*Historical background, Failure of	01	
		of Quantum	classical theory in explaining		
		Mechanics	*Black body radiation &	01	
	July		Photoelectric effect		
			* Compton effect qualitative	02	14
			analysis	01	
			* Assumption of Plank's quantum	01	
			theory	01	
			* Wave Particle Duality	01	
			* De-Broglie Hypothesis	02	
			* Davisson Germer expt.		
			*Concept of Wave packet, Phase	01	
			velocity , Group velocity relation	01	
			* Heisenberg's uncertainty	02	
			principal		
			* Different forms		
			* Thought expt.Gamma ray		
			microscope		
		Unit :- II The	* Wave function and its physical	01	
2		Schrodinger	significance		
		equation and	* Schrodinger time dependent	01	
		its	equation	01	
		applications	* Separation in time dependent		12
	July/Aug.		and time independent parts	01	
			* Operators in quantum	02	
			Mechanics	02	
			* Eigen functions and Eigen		
			values	02	
			* Particle in one dimensional and		
			three dimensional box (Energy	02	
			eigen values)		
			* Qualitative analysis of potential		
			barrier Tunneling effect)		
			* Simple Harmonic Oscillator		
			(Qualitative analysis of Zero point		
		Unit- III	*Vector Atom Model: Quantum	01	
		Atomic and	Numbers,		
		Molecular	*Stern- Gerlach experiment;	02	
	Aug./Sep	Spectroscopy	*selection rules, l-s and j-j	01	
3			coupling	01	
			*Types of spectra – Emission &		11
			absorption spectra.	01	
			*X-rays: Continuous X-ray	01	
			spectrum, *Duane and Hunt's law,	01	
			*characteristic X-ray spectra,	01	
			*Mosley's law	01	
			*Raman Effect: stoke's and anti-		
			stoke's lines,	01	

			*Ouantum theory of Raman effect.		
			Experimental Arrangement for		
			Raman Spectroscopy.		
4	Aug./Sept.	Unit:-IV	*Detection of charged particles;	01	
	07 1	Nuclear	*G. M. counter,	02	
		Physics	*Binding energy and Mass defect,	02	
		5	stability of nuclei		
			*Alpha Decay: Range of Alpha	01	
			particles, *Geiger - Nuttal law and	02	
			Gamow's explanation of alpha		
			decay (qualitative)*Beta decay:	02	13
			Types and Pauli's Neutrino		
			Hypothesis	02	
			*Nuclear Fission, Nuclear fusion		
			(concepts only),	01	
			*Nuclear reactors.		
5		Unit:-V	*Hybrid parameters	01	
		Hybrid	*low frequency equivalent of CE	02	
		parameters	amplifier & its analysis.,		
	Sep./Oct.		*Bias stability & thermal runway	02	
			qual.	01	12
			*General principles of amplifier		
			classification,	01	
			*RC coupled amplifier,	02	
			*Equivalent circuits & gain at low,		
			medium & high frequency	01	
			(qualitative),	02	
			*Gain-frequency response.		
			*Noise & distortion in electronic		
(CITCUITS.	01	
6		Unit :- VI	*Feedback in amplifiers- Negative	01	
	Son (Oat	reeuback III	*A dyanta and of nagative feedback	01	
	sep./Oct	ampimers	*nositivo foodback	01 01	10
			*Dhase shift and Wein bridge	01	10
			*Hartley & Colnits Oscillators	02	
			$\frac{1}{1}$	02	
			monostable & histable	05	

In-Charge Teacher

Amrut Sevabhavi Sanstha, Parbhani. Late Ku. Durga K. Banmeru Science College,Lonar Dist-Buldhana. Department of Physics Teaching Plan Session:- 2023-24 Name :- Mr. Sharique S. Shaikh Class:-B.Sc. IIIrd Year /Sem. VI Paper:- (6S) Statistical mechanics & solid state physics.

Sr. Month Name of Topics Required Total No. Unit Lect. Lect. Unit-I Statistical *Phase space, Unit cell 01 mechanics *Microstates 01 1 and Macro states 01 Dec./Jan *Energy states, Density of 09 **Energy states** 02 *Probability and most probable distribution 01 *Boltzman entropy relation 01 *Maxwell-Boltzman relation 01 *Molecular 01 speed distribution * r.m.s. speed and most probable velocity Unit :- II Bose-*Distinguishable& 02 2 Dec./Jan **Einstein statistics** Indistinguishable particles Concept of boson and 01 fermions 02 * Bose-Einstein statistics 01 10 * Black body radiation 01 *Fermi-Dirac distribution 01 * Fermi function 01 01 * Fermi energy *Fermi temp. *Crystalline and Amorphous Unit:-III 01 materials 3 Crystallography Jan. * Unit cell 01 * Miller indices 01 *Types of lattice 01 11 * Coordination number 01 Diffraction of lattice 01 parameter 01 * Diffraction of X-rays by 01 crystal 01 *Bragg's law 02 *Reciprocal lattice *Defects in solids * Motion of electron **Unit:-IV Electrical** 01 * Electrical conductivity 4 properties of 01 material * Expn. For electrical 02 conductivity and ohm's law * Fermi energy and density of Jan./Feb 01 states * Electron in periodic 01 potential 01 10 * Bloch theorem 01 *Energy band , energy gap 01 * Free electron model 01

*Conductor's ,insulator's,

			semiconductor's		
		Unit:-V Magnetic	* Atomic magnetic moment	01	
5		properties of	*Magnetization vector (M)	01	
		materials	* Magnetic susceptibility	01	
	Feb./Mar		* Diamagnetism,	01	
			Paramagnetic,		13
			Ferromagnetism	01	
			* Dia. Para-,and		
			ferromagnetic materials	02	
			* Langevin's theory of		
			diamagnetism	02	
			* Langevin's theory of Para		
			magnetism	02	
			* Quantum mechanical		
			treatment of Para	01	
			magnetism	01	
			*Curie-Weiss's law		
			*Hysteresis and energy loss		
6		Unit-VI	*Superconductivity	01	
		Superconductivity	*Critical temp. and critical	01	
		and	magnetic field		
	Feb./Mar.	Nanotechnology	*Meissner effect *Type I and	01	
			Type II Superconductor.	01	
			*BCS Theory, cooper pair		
			*Application of	02	12
			superconductor's	01	
			*Effect of reduction of dim.	01	
			of physical properties		
			*History of nanotechnology	01	
			*Quantum size effect	01	
			*Application of Nano	01	
			materials		

Amrut Sevabhavi Sanstha, Parbhani. Late Ku. Durga K. Banmeru Science College,Lonar Dist-Buldhana. Department of Physics Teaching Plan Session:- 2023-24 Name :- Mr. Sharique S. Shaikh Class:-B.Sc. II Year /Sem. III Subject:- Physics Paper:-3S- Thermal Physics, Statistical Mechanics & Solid State Devices-I **(CBCS)**

Sr	Month	Name of	Topics	Required	Total
No	1.10mm	Unit	Topics	Lect	Lect
1		Unit I	Unit Untroduction of lows of	01	1000
L T		thormodynamics	thermodynamics: Zeroth laws	01	
		thermouynamics	first law, second law, third law,	01	
	Δυσ		of thormodynamics and	01	
	Aug.		concept of entropy	01	12
			Thermodynamic Potentials:	01	12
			Enthalpy Cibbs Helmholtz and	01	
			internal energy functions	01	
			Maxwell's relations &	01	
			applications Joule-Thomson	02	
			effect Clausius- Clanevron	02	
			equation Expression for (CP –	01	
			CV) CP/CV TdS equations	01	
			Numerical	01	
		Unit :- II	Kinetic Theory of Gases: Mean	01	
2		Kinetic Theory	free path. Transport	01	
		of Gases	phenomena: viscosity.	01	
			conduction and diffusion.	• -	
			Theory of radiation: Blackbody	01	12
	Aug.		radiation, spectral distribution,		
	0		concept of energy density,	01	
			Wien's distribution law,		
			Rayleigh-Jeans Law, Planck's	02	
			quantum hypothesis, derivation		
			of Planck's law, deduction of	02	
			Wien's distribution law,		
			Rayleigh- Jeans law, Stefan		
			Boltzmann law and Wien's	02	
			displacement law from Planck's		
			law,	01	
			Numerical.	01	
		Unit- III	Statistical Mechanics: Phase	01	
		Statistical	space, unit cell,		
		Mechanics	macrostate and microstate,	02	
	Sept.		entropy and thermodynamic	01	
3			probability, Maxwell-	01	
			Boltzmann law, distribution of	01	12
			velocity, Quantum statistics:	01	
			Fermi-Dirac distribution law,	01	
			electron gas, Bose-Einstein	01	
			distribution law, photon gas,	01	
			comparison of three statistics,	01	
		1	Numerical	01	

4	Sept.	Unit: -IV	Semiconductor Devices: P-N	01	
		Semiconductor	junction diode. Zener diode and	01	
		Devices	light emitting diode	01	
			(construction, biasing,	-	
			characteristics and	01	
			applications) Rectifiers: Half	01	
			wave rectifier full-wave	01	
			rectifier bridge rectifier rinnle	01	12
			factor rectification efficiency	01	10
			(Qualitative only) comparison	01	
			of rectifiers Filter circuits	01	
			(Qualitative only): canacitor	01	
			filter inductor filter L-section	01	
			and π soction filter Dower	01	
			Supply Ordinary newsr supply	01	
			line and load regulation	01	
			line and load regulation,	01	
			regulated power supply, Zener	01	
			Numerical (12 Leatures)	01	
-		II.:'+ X7	Numerical. (12 Lectures)	01	
5		Unit: -V	I ransistor: construction and	01	
		Transistor	working of PNP and NPN	02	
			transistor, different modes,	0.1	
	Oct.		characteristics of transistor in	01	10
			CB and CE mode, current gain	01	12
			in CB and CE mode and relation		
			between them, CE transistor	01	
			amplifier, active, cut-off and	02	
			saturation regions, dc load line,		
			operating point. Junction Field	01	
			Effect Transistor (JFET): Types,	02	
			construction, working and		
			characteristics, parameters of	01	
			JFET and their relation,		
			difference between JFET and		
			BJT, Numerical.	01	
6		Unit: - VI Skill	Introduction to soldering	01	
		Enhancement	Technique: Introduction, Types		
	Oct.	Module (SEM)	of solder, Solder flux, Soldering	01	
			Irons and types, Contamination	01	10
			and cleaning of soldering iron,	01	
			Desoldering techniques,	01	
			Hazards involved in soldering.	01	
			Breadboard: Introduction,		
			basics and its connections.	01	
			Regulated Power Supply:	01	
			Definition, Block Diagram,	01	
			Characteristics (Load and line		
			regulation), its Application,	01	

In-Charge Teacher

Amrut Sevabhavi Sanstha, Parbhani. Late Ku. Durga K. Banmeru Science College,Lonar Dist-Buldhana. Department of Physics Teaching Plan Session: - 2023-24 Name: - Mr. Sharique S. Shaikh Class: -B.Sc. II Year /Sem. IV Paper: - 4S Physical Optics, Fluid Dynamics & Solid State Devices-II **(CBCS)**

Sr.	Month	Name of	Topics	Req.	Total
No.		Unit		Lect.	Lect.
1	Ion	Unit I Interference of Light	Introduction, conditions for steady interference, Interference in thin film due to reflected	01 01 02	
	Jall		thickness (wedge shaned) film	02	12
			Newton's rings (formation, theory and	01	12
			applications such as determination of	01	
			wavelength and refractive index),	01	
			Michelson Interferometer (principle,	01	
			construction & working),	01	
			Numerical.	01	
		Unit II	Rectilinear propagation of light,	01	
2	Jan	Diffraction of Light	half period zones, zone plate (construction and theory),	01	
			convox long	01	12
			Fresnel and Fraunhoffer diffraction.	01	12
			Fraunhoffer diffraction at double slit,	01	
			theory of plane transmission grating,	01	
			determination of wavelength of light by	01	
			diffraction grating.	01	
			Polarization: Transverse nature of light	01	
			nlane polarized light half and quarter	01	
			wave plate, circular and elliptical	01	
			polarization (production and analysis).		
			Numerical.	01	
3	Feb	Unit III LASER:	Introduction, properties of Laser, stimulated absorption, spontaneous	02	
	100.		metastable state and population	01	12
			Components of Laser (active medium,	01	12
			three level and four level laser system, construction and working of Ruby laser	01	
			and Helium Neon (HeNe)	01	
			laser. Applications of laser in medical		
			and industrial field.	01	
			Fibre Optics: Introduction, structure,	01	
			total internal reflection,	01	
			propagation of light wave through an	01	
			optical fibre,	01 01	
			numerical aperture.	01	
			Numerical.	01	

		Unit IV	viscosity, streamline and turbulent	01	
4		Kinematics of	flow,	01	
		Moving	critical velocity,	01	
		Fluids:	equation of continuity, energy of the		
	Feb.		liquid,	01	
			Bernoulli's theorem and its		
			applications (Venturi meter,	01	
			Atomizer),	01	12
			derivation of Poiseuille's equation for	01	
			flow of liquid through a capillary tube,	01	
			Reynold's number and its physical		
			significance,	01	
			terminal velocity,	01	
			Stokes' law and its deduction.	01	
			Numerical.	01	
		Unit V	: Differential Amplifiers, OP-AMP	01	
5		Operational	Block Diagram,	01	
		amplifier	Parameters of OP-AMP,	01	
	Mar.		Characteristics of Ideal OP-AMP,	01	
			Inverting and Non-inverting		12
			amplifiers, Adder, Subtractor,	02	
			Differentiator, Integrator. Sinusoidal		
			Oscillators: Feedback in amplifier,	01	
			Barkhausen Criterion, Phase Shift		
			Oscillator (Construction and working),	01	
			Oscillatory Circuit (Tank Circuit),	01	
			Colpitt's and Hartley Oscillator	02	
			(Construction and working).		
			Numerical.	01	
6		Unit VI Skill	1.Optical Components in Microscopes	02	
		Enhancement	and Telescopes • Objective lenses and		
		Module	eyepieces • Mirrors and prisms •		
	Mar.	(SEM) Design	Filters and diaphragms • Optical		
		and Handling	coatings and materials		
		of	2. Microscope Design and Operation •		
		Microscopes	Compound and stereo microscope	02	10
		and	systems • Illumination techniques •		
		Telescopes	Magnification and resolving power •		
			Image formation and focusing		
			mechanisms		
			3. Telescope Design and Operation •		
			Refracting and reflecting telescope		
			systems • Aperture and focal length	02	
			considerations • Mounts and tracking		
			mechanisms • Observing techniques		
			and celestial objects		
			4. Alignment and Calibration		
			Techniques • Aligning optical		
			components in microscopes and	01	
			telescopes • Collimation of telescopes •		
			resting and verification of alignment •		
			Calibration of magnification and		
			measurements	01	
			5. Handling and Maintenance of	01	
			Microscopes and Telescopes • Proper		
			Cleaning techniques to avoid damage •		
			cleaning procedures for optical		

considerations for these instruments • Maintenance and troubleshooting	02	
common issues		

Amrut Sevabhavi Sanstha, Parbhani. Late Ku. Durga K. Banmeru Science College,Lonar Dist-Buldhana. Department of Physics Teaching Plan Session:- 2023-24 Name :- Mr. Sharique S. Shaikh Class:-B.Sc. I Year /Sem. I Subject:- Physics Paper:-1S- Mechanics, Properties of matters, Oscillations & Relativity **(CBCS)**

Sr.	Month	Name of	Topics	Required	Total
No.		Unit		Lect.	Lect.
1		Unit I Rotational	Rigid body Torque Rotation	01	
1		Dynamics	about fixed axis Kinetic Energy	01	
		Dynamico	of rotation moment of inertia	01	
	Aug.		and its physical significance.	01	
	0		Radius of gyration.	02	12
			Perpendicular and parallel axes	01	
			theorem (Statement Only), Fly-	01	
			wheel, Moment of inertia of	01	
			different bodies (Rod, Disc,	01	
			cylinder and sphere) about	02	
			different axes, Rolling motion.		
			Principle of Conservation of	01	
			Angular momentum. Principle	01	
			and working of Gyroscope.		
			Numerical.		
		Unit II SHM and	, time period of simple	01	
2		its solution	pendulum, compound		
			pendulum, kater's pendulum &	01	
			Torsional pendulum; Bifilar		
			pendulum (Qualitative).	01	12
	Aug.		Damped Oscillations:	0.1	
			Differential equation of damped	01	
			harmonic oscillator and its	0.2	
			solution, Energy equation of	02	
			dissipation and Quality factor	02	
			Earcod Oscillations: Differential	02	
			equation of forced oscillation		
			(Qualitative) Resonance	02	
			(Amplitude), Numericals	02	
			(02	
-		Unit III	Superposition of two SHM of	01	
		Superposition of	same frequency along the same		
		S.H.Ms.:	line, superposition of two		
	Sept.		mutually perpendicular SHM of	02	
3			same frequency, Lissajous	01	
			figures. Velocity of longitudinal		12
			waves (Newton's formula),	01	
			Laplace correction, velocity of		
			transverse waves in stretched	01	
			string, Standing waves, Organ		
			Pipe, harmonics and overtones.	01	
			velocity of waves by Kundt's	01	
			tube. Ultrasonic waves:	01	
			Production (plezoelectric	01	
			crystal and Magnetostriction)	01	
			waves and its applications in	01	
			waves and its applications in	01	
L		1			

			medical and industrial field.	01	
			Numerical		
4	Sept.	Unit IV	Different types of elasticity,	01	
		Elasticity:	Twisting couple on a cylindrical	02	
			rod or wire, Determination of	02	
			modulus of rigidity by Maxwell		
			needle, Torsional pendulum,	01	
			Torsional oscillations, Modulus	02	
			of rigidity of a material of wire		
			by torsional pendulum, Beam,	02	12
			Bending of beam, Bending		
			moment, External and internal	02	
			bending moments, Cantilever,		
			Expression for depression of a	01	
			beam (i) loaded at one end and		
			(ii) loaded at the center.		
			Numerical		
5		Unit V	Kepler's laws of planetary	01	
		Gravitation and	motion (Statements only),	02	
	0.1	Special Theory	Newton's law of gravitation,	0.1	
	Oct.	of Relativity	Variation of "g" with altitude	01	10
			and depth, weightlessness,	01	12
			Satellite in circular orbit and	01	
			applications, Geosynchronous	01	
			Orbit, basic idea of Global	0.2	
			Fositioning System(GPS).	02	
			Non inortial frame of reference	01	
			Caliloan transformation	01	
			Postulatos of special theory of	02	
			relativity Lorentz	01	
			transformation length	01	
			contraction Time dilation		
			Einstein's mass energy relation	01	
			Numerical	01	
6		Unit :- VI Skill	Measurements: Significance of	01	
Ũ		Enhancement	measurements, methods of	01	
	Oct.	Module (SEM)	measurements. Static and	01	
	/Nov.	Basics of	dynamic characteristics:	-	12
	'	Measurement	Instruments accuracy,	01	
		Technique	precision, sensitivity, resolution	01	
		-	range etc. Errors in		
			measurements: Types of errors:	01	
			i) Gross errors ii) Systematic	01	
			errors iii) Random errors and		
			loading effects. Statistical		
			evaluation of measurement	01	
			data: Arithmetic mean &	01	
			median, Average deviation:		
			Measurement with Screw	01	
			Gauge, Vernier Caliper,	~ /	
			Travelling Microscope,	01	
			Spectrometer.		

In-Charge Teacher

Amrut Sevabhavi Sanstha, Parbhani. Late Ku. Durga K. Banmeru Science College, Lonar Dist-Buldhana. Department of Physics Teaching Plan Session:- 2023-24 Name :- Mr. Sharique S. Shaikh Class:-B.Sc. I Year /Sem. II Paper:- 2S Electrostatics, Magnetostatics, Ultrasonic Waves and Acoustics, Network S)

Theorems	(CBCS
11100101110	

Sr.	Month	Name of	Topics	Req.	Total
No.		Unit		Lect.	Lect.
		Unit I Vector	Scalar and Vector product,	02	
1		Analysis:	gradient, divergence,	01	
			Curl and their significance,	02	
	Jan		Vector Integration, Line,	01	
			surface and volume integrals of Vector	02	12
			fields,	01	
			Gauss-divergence theorem	01	
			Numerical	02	
		** • •		01	
2	Inn	Unit II	Electrostatic Field,	01	
Ζ	Jan	Electrostatics:	electric flux,	01	
			Applications of Cause theorem Electric	01	
			field due to point charge infinite line of	01	12
			charge	01	12
			uniformly charged spherical shell and	01	
			solid sphere.	01	
			Electric potential as line integral of	01	
			electric field,	01	
			potential due to a point charge, electric	01	
			dipole,		
			uniformly charged spherical shell and	01	
			solid sphere.	01	
			Relation between electric field and	01	
			electric potential. Numerical	02	
2		Unit III Congritory	Capacitance of an isolated spherical	02	
З	Fob	Capacitors:	Conductor. Darallel plate, epherical and enlindrical	01	
	reb.		condenser	01	
			Energy per unit volume in electrostatic	01	12
			field.	•1	
			Dielectric medium,	01	
			Polarisation,	01	
			Displacement vector.	01	
			Gauss's theorem in dielectrics.	02	
			Parallel plate capacitor completely	01	
			filled with dielectric.		
			Numerical	01	
4		Unit IV	Biot-Savart's law & its applications-	01	
4		Magnetostatics:	straight conductor, circular coll,	01	
			and curl of magnetic field Magnetic	01	
	Feh		vector notential Amnere's circuital	01	
	/Mar		law. Electromagnetic Induction		
	/		Faraday's laws of electromagnetic	01	
			induction, Lenz's law, self and mutual		12
			inductance, L of single coil, M of two	01	
			coils. Energy stored in magnetic field.	01	
			Numerical		

		Unit V Network	: Series circuit,	01	
5		Theorems	Series voltage dividers,		
			Parallel circuits,	01	
	Mar.		Series Parallel circuits,		
			Resistances in series and parallel,	01	12
			Kirchhoff's Current and Voltage laws,	01	
			Wheatstone's Bridge,	01	
			Ideal constant voltage source,	01	
			Ideal constant current source,	01	
			Superposition theorem,	01	
			Thevenin's theorem,	01	
			Norton's theorem,		
			Maximum power transfer theorem,	02	
			Milliman's theorem,		
			Numerical	01	
6		Unit VI Skill	Principles of measurement of dc	02	
		Enhancement	voltage and dc current,		
		Module	ac voltage, ac current and resistance.		
	Apr.	(SEM)	Specifications of a multimeter and their	02	
		Multimeter	significance.		
			Introduction to electrical components:		
			Resistor-Types of Resistors, Color		12
			coding - Applications of a Resistor as a	02	
			heating element in heaters and as a		
			fuse element.		
			Capacitor- Types of Capacitor, Color	02	
			coding, Applications of Capacitor in		
			power supplies, motors (Fans) etc.		
			Inductor-Types of Inductors, EMF		
			induced in an Inductor, Applications of	02	
			Inductor in a fan, radio tuning 6 circuit		
			and Series resonance circuit. Energy		
			audit:		
			Unit of electricity, power of domestic	02	
			appliances.		

In-Charge Teacher Dept. of Physics