B.Sc. Part-I (Semester-II) Examination
 MATHEMATICS
 (Differential Equations : Ordinary \& Partial) Paper-III

[Maximum Marks : 60
Time : Three Hours]
Note :-(1) Question No. 1 is compulsory. Solve it in ONE attempt only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) The roots of the equation $\left(D^{2}-4 D+13\right)^{2} y=0$ are :
(a) distinct and real
(b) real and equal
(c) complex and repeated
(d) None of these
(ii) A linear equation of first order is of the form $\mathrm{Y}^{\prime}+\mathrm{PY}=\mathrm{Q}$ in which ?
(a) P is function of Y
(b) P and Q are function of X
(c) P is function of X and Q is function of Y
(d) None of these
(iii) The condition for the partial differential equation $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ to be compatible is that :
(a) $\mathrm{J}_{\mathrm{pp}}+\mathrm{J}_{\mathrm{yq}}+\mathrm{PJ} \mathrm{J}_{\mathrm{zp}}+\mathrm{q} \cdot \mathrm{J}_{\mathrm{zq}}=0$
(b) $\mathrm{J}_{\mathrm{xp}}+\mathrm{J}_{\mathrm{yq}}+\mathrm{PJ}_{\mathrm{zp}}+\mathrm{q} \cdot \mathrm{J}_{\mathrm{zq}}=0$
(c) $\mathrm{J}_{\mathrm{xp}}+\mathrm{J}_{q \mathrm{q}}+\mathrm{PJ} \mathrm{J}_{z p}+\mathrm{q} \cdot \mathrm{J}_{z q}=0$
(d) None of these
(iv) The D.E. $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} v}{\partial t^{2}}=0$ is called :
(a) Partial differential equation
(b) Ordinary differential equation
(c) Total differential equation
(d) Linear differential equation
(v) An equation of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the functions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ is called :
(a) Lagrange's equation
(b) Jacobi's equation
(c) Charpit's equation
(d) Clairaut's equation
(vi) The particular solution of $D E W^{\prime \prime}+\mathrm{PW}^{\prime}+\mathrm{QW}=0$ is $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ iff :
(a) $P+x Q=0$
(b) $1+\mathrm{p}+\mathrm{q}=0$
(c) $1-\mathrm{P}+\mathrm{Q}=0$
(d) $\mathrm{m}^{2}+\mathrm{mP}+\mathrm{Q}=0$
(vii) The solution of $\operatorname{PDE}\left(D-\mathrm{mD}^{\prime}\right) z=0$ is :
(a) $z=F(y+m x)$
(b) $z=F^{\prime}(y-m x)$
(c) $z=F\left(e^{x y}\right)$
(d) None of these
(viii) The general form of PDE of first order is :
(a) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p})=0$
(b) $F(x, y, z, q)=0$
(c) $F(x, y, z, p, q)=0$
(d) $F(y, z, p, q)=0$
(ix) The complete integral of $F(x, p)=G(y, q)$ is:
(a) $\mathrm{z}=\int \mathrm{h}(\mathrm{x}$ a) dx
(b) $\int k(y$ a) $d y$
(c) $z=\int h(x \quad a) d x+\int k(y$ a $) d y+b$
(d) None of these
(x) The DE Mdx $+\mathrm{Ndy}=0$ is exact iff :
(a) $\frac{\partial M}{\partial x}=\frac{\partial M}{\partial y}$
(b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(c) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$
(d) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$

UNIT-I

2. (a) Show that the D.E. :

$$
\left(\sin x \sin y-x e^{y}\right) d y=\left(e^{y}+\cos x \cdot \cos y\right) d x
$$

is exact and hence solve it.
(b) Find the orthogonal trajectory of $r^{n}=a^{n} \cos n \theta$.
3. (p) Solve the D.E. :

$$
\left(1+x^{2}\right) d y+2 x y d x=\cot x d x
$$

(q) Solve :

$$
\begin{equation*}
x y-\frac{d y}{d x}=y^{3} e^{-x^{2}} . \tag{5}
\end{equation*}
$$

UNIT--II

4. (a) Solve the D.E. $\left(D^{2}-4\right) y=e^{2 x}$.
(b) Solve the D.E. $\left(x^{2} D^{2}-3 x D-5\right) y=x^{2} \sin (\log x)$. 5
5. (p) Solve the D.E. $\left(x^{2} D^{2}-x D+4\right) y=\cos (\log x)$.
(q) Solve the D.E. $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{2 x}+\sin 2 x$.

UNIT--III

6. (a) Solve the system of D.E : $D^{2} x-2 y=0$ and $D^{2} y+2 x=0$.
(b) Solve the D.E. $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$ by variation of parameter.
7. (p) Solve $x^{2} y^{\prime \prime}+x y^{\prime}+10 y=0$ by changing the independent variable from x to $\mathrm{z}=\log \mathrm{x}$.
(q) Solve the following D.E. by removing the first derivative :

$$
\begin{equation*}
x \frac{d}{d x}\left(x \frac{d y}{d x}-y\right)-2 x \frac{d y}{d x}+2 y+x^{2} y=0 \tag{5}
\end{equation*}
$$

UNIT-IV

8. (a) Solve :

$$
\begin{equation*}
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)} \tag{5}
\end{equation*}
$$

(b) Find the complete integral of $z=p^{2} x+q^{2} y$. 5
9. (p) Find the general solution of PDE $x^{2} p+y^{2} q=(x+y) z$. 5
(q) Solve the PDE $\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{k}^{2}$. 5

UNIT-V
10. (a) Solve the D.E. $\left(\mathrm{D}^{2}+3 \mathrm{DD}^{\prime}+2 \mathrm{D}^{\prime 2}\right) \mathrm{z}=\mathrm{x}+\mathrm{y}$. 5
(b) Solve by Charpits method pxy + pq + qy $=y z$. 5
11. (p) The PDE $z=p x+q y$ is compatible with any equation $f(x, y, z, p, q)=0$ where f is homogeneous in x, y, z. Prove this.
(q) Find a real function v of x and y, reducing to zero when $y=0$ and satisfying

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=-4 \pi\left(x^{2}+y^{2}\right) \tag{5}
\end{equation*}
$$

B. Sc. (Part-I) Semester-II Examination
 MATHEMATICS
 (Vector Analysis and Solid Geometry)
 Paper-IV

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory; attempt it once only.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(i) If three vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar, then for scalar triple product, which of the following is correct ?
(a) $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$ is perpendicular to the vector $\overrightarrow{\mathrm{a}}$
(b) $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$ is parallel to the vector $\overrightarrow{\mathrm{a}}$
(c) $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$ is equal to the vector $\overrightarrow{\mathrm{a}}$
(d) None of these.
(ii) The scalar triple product represents the volume of the \qquad .
(a) rectangle
(b) sphere
(c) parallelepiped
(d) ellipse
(iii) The curvature k is determined \qquad .
(a) only in magnitude
(b) only in sign
(c) both in magnitude and sign
(d) neither in magnitude nor sign 1
(iv) A plane determined by the tangent and binormal at $P(\vec{r})$ to the curve $\vec{r}=\vec{r}(s)$ is a \qquad .
(a) osculating plane
(b) rectifying plane
(c) normal plane
(d) none of these
(v) Which of the following quantity is defined?
(a) $\operatorname{div}(\operatorname{div} \vec{f})$
(b) $\operatorname{curl}(\operatorname{div} \vec{f})$
(c) $\operatorname{grad}($ curi $\bar{f})$
(d) $\operatorname{grad}(\operatorname{div} \vec{f})$
(vi) A vector $\overrightarrow{\mathrm{f}}$ is solenoidal if \qquad .
(a) curl $\vec{f}=0$
(b) $\operatorname{div} \overrightarrow{\mathrm{f}}=0$
(c) $\operatorname{grad} \overrightarrow{\mathrm{f}}=0$
(d) $\operatorname{grad}(\operatorname{div} \bar{f})=0$
(vii) If the radius of the circle is equal to the radius of the sphere, the circle is called a \qquad .
(a) small circle
(b) imaginary circle
(c) great circle
(d) none of these
(viii) The equations of the sphere and the plane taken together represent a \qquad .
(a) sphere
(b) plane
(c) straight line
(d) circle
(ix) Every section of a right circular cone by a plane perpendicular to its axis is \qquad .
(a) a sphere
(b) a cone
(c) a circle
(d) a cylinder
(x) The general equation of the cone passing through the coordinate axes is \qquad .
(a) $f y z+g z x+h x y=0$
(b) $y z+z x+x y=0$
(c) $a x^{2}+b y^{2}+c z^{2}=0$
(d) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=0$

UNIT-I

2. (a) Show that $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.
(b) If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and \vec{c}, \vec{b} and \vec{c} being non-parallel.
3. (p) If \vec{f} is a vector function of t and u is a scalar function of t, then prove that :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{uf})=\mathrm{u} \frac{\mathrm{~d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}+\frac{\mathrm{du}}{\mathrm{dt}} \overrightarrow{\mathrm{f}} . \tag{5}
\end{equation*}
$$

(q) Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{d t^{2}} d t$, where

$$
\begin{equation*}
\overrightarrow{\mathrm{r}}(\mathrm{t})=5 \mathrm{t}^{2} \overrightarrow{\mathrm{i}}+\mathrm{t} \overrightarrow{\mathrm{j}}-\mathrm{t}^{3} \overrightarrow{\mathrm{k}} \tag{5}
\end{equation*}
$$

UNIT--II

4. (a) Prove that helices are the only twisted curves whose Darboux's vector has a constant direction.
(b) For the curve $x=3 t, y=3 t^{2}, z=2 t^{3}$ at the point $t=1$, find the equations for osculating plane, normal plane and rectifying plane.
5. (p) For the curve $x=a(3 t-t), y=3 a t^{2}, z=a\left(3 t+t^{3}\right)$, show that the curvature and torsion are equal.
(q) If $\vec{t}^{\prime}=\vec{d} \times \vec{t}, \vec{n}^{\prime}=\vec{d} \times \vec{n}, \vec{b}=\vec{d} \times \vec{b}$, then find the vector \vec{d}.
6. (a) If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$, then show that $\operatorname{div}\left(r^{n} \vec{r}\right)=(n+3) r^{n}$.
(b) Find the directional derivative of $\phi=x y^{2}+\mathrm{yz}^{2}$ at the point $(2,-1,1)$ in the direction of the vector $\vec{i}+2 \vec{j}+2 \vec{k}$.
(c) If $\phi=3 x^{2} y-y^{3} z^{2}$, find grad ϕ at the point $(1,-2,-1)$.
7. (p) If $\overrightarrow{\mathrm{F}}=\left(2 x+y^{2}\right) \vec{i}+(3 y-4 x) \vec{j}$, evaluate $\int_{c} \overrightarrow{\mathrm{~F}} . d \overrightarrow{\mathrm{r}}$ along the parabolic arc $y=x^{2}$ joining $(0,0)$ and $(1,1)$.
(q) Apply Green's theorem to prove that the area enclosed by a simple plane curve C is $\frac{1}{2} \int_{c}(x d y-y d x)$. Hence find the area of an ellipse whose semi-major and semi-minor axes are of lengths a and b.
$3+2$

UNIT-IV

8. (a) Find the equation of a sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ is a great circle.
(b) Find the equation of the sphere circumscribing the tetrahedron whose faces are :

$$
\begin{equation*}
x=0, y=0, z=0, \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{5}
\end{equation*}
$$

9. (p) State and prove the condition for the orthogonality of two spheres. $1+4$
(q) Find the coordinates of the centre and radius of the circle $x+2 y+2 z=15$; $x^{2}+y^{2}+z^{2}-2 y-4 z=11$.

UNIT-V

10. (a) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line $x=-2 y=z$.
11. (p) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and the guiding curve is the ellipse $\mathrm{x}^{2}+2 \mathrm{y}^{2}=1, \mathrm{z}=3$.
(q) Find the equation of the right circular cylinder of radius z whose axis passes through $(1,2,3)$ and has direction cosines proportional to $2,-3,6$.

B.Sc. (Part-I) Semester-II Examination
 2S : MATHEMATICS (New)
 Differential Equation : Ordinary and Partial
 Paper-III

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Solve it in one attempt only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(1) The integrating factor of the $D E \frac{d y}{d x}+2 x y=x$ is \qquad
(a) x
(b) e^{x}
(c) $\mathrm{e}^{\mathrm{x}^{2}}$
(d) $\mathrm{e}^{-\mathrm{x}^{2}}$
(2) The $\mathrm{DE} M d x+\mathrm{Ndy}=0$ is exact if
(a) $\frac{\partial M}{\partial \mathrm{x}}=\frac{\partial N}{\partial \mathrm{x}}$
(b) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial y}$
(c) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(d) $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
(3) The degree of the DE $\frac{d^{3} y}{d x^{3}}=\sqrt[4]{4+\left(\frac{d y}{d x}\right)^{5}}$ is
(a) 1
(b) 2
(c) 3
(d) 4
(4) The primitive of the $D E \frac{d^{2} y}{d x^{2}}+9 y=0$ is \qquad
(a) $y=c_{1} \cos x+c_{2} \sin x$
(b) $y=c_{1} \cos 3 x+c_{2} \sin 3 x$
(c) $y=\left(c_{1}+c_{2} x\right) \cos 3 x$
(d) None of these
(5) The particular solution of the $D E y^{\prime \prime}+P y^{\prime}+Q y=0$ is $y=x$ if \qquad
(a) $\mathrm{P}+\mathrm{Qx}=0$
(b) $1+\mathrm{P}+\mathrm{Q}=0$
(c) $1-\mathrm{P}+\mathrm{Q}=0$
(d) $\mathrm{m}^{2}+\mathrm{mP}+\mathrm{Q}=0$
(6) The value of $\frac{1}{f(D)} e^{a x}, f(a) \neq 0$ is given by
(a) $\frac{1}{f(D+a)} e^{a x}$
(b) $\frac{1}{f(D-a)} e^{a x}$
(c) $\frac{1}{f(a)} e^{a x}$
(d) $\frac{1}{f(-a)} e^{a x}$
(7) The general form of the First order PDE is \qquad
(a) $f(x, y, z, p, q)=0$
(b) $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{p}, \mathrm{q})=0$
(c) $f(x, z, p, q)=0$
(d) $f(z, p, q)=0$
(8) Lagrange's form of the PDE of order one has the form
(a) $P_{p}-Q_{q}=R$
(b) $P_{q}+Q_{p}=R$
(c) $P_{p}+Q_{4}=R$
(d) None of these
(9) The general solution of the $\operatorname{PDEF}\left(\mathrm{D}, \mathrm{D}^{\prime}\right) \mathrm{Z}=0$ consists of
(a) C.F.
(b) P.I.
(c) C.F. and P.I.
(d) None of these
(10) The P.I. of the $\operatorname{PDE}\left(D-D^{12}\right) z=e^{2 x y}$ is \qquad
(a) $\frac{1}{3} e^{2 x-y}$
(b) $\frac{1}{5} \mathrm{e}^{2 x-y}$
(c) $-\frac{1}{3} \mathrm{e}^{2 x-y}$
(d) $e^{2 x-y}$

UNIT-I

2. (a) Solve the DE $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$.
(b) Show that the $D E\left(\sin x \cdot \sin y-x e^{y}\right) d y=\left(e^{y}+\cos x \cdot \cos y\right) d x$ is exact and hence solve it.
3. (p) Solve the DE $3 x^{4} p^{2}-x p-y=0$. 5
(q) Find the orthogonal trajectories of the family of semi cubical parabolas $a y^{2}=x^{3}$. 5

UNIT-II

4. (a) Solve the DE $y^{\prime \prime}-4 y^{\prime}+4 y \cdot=e^{2 x}+\sin 2 x$.
(b) Solve the $D E \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{-5 x}$.
5. (p) Solve the $D E\left(x^{2} D^{2}-x D+4\right) y=\cos (\log x)$.
(q) Solve the $D E \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=\sin 2 x$.
6. (a) Solve the DE $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=(2 x+1) x^{2}$.
(b) Solve the $D E \frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}+y \cos ^{2} x=0$ by putting $z=\sin x$.
7. (p) Solve the DE $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$ by variation of parameters.
(q) Solve the simultaneous DEs $\frac{d x}{d t}+7 x-y=0, \frac{d y}{d t}+2 x+5 y=0$.

UNIT-IV

8. (a) Obtain the partial differential equation by eliminating arbitrary functions from :

$$
\mathrm{V}=\frac{1}{\mathrm{r}}[\mathrm{f}(\mathrm{r}-\mathrm{at})+\mathrm{g}(\mathrm{r}+\mathrm{at})]
$$

(b) Solve :

$$
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}
$$

9. (p) Find the general integral of the PDE $z(x p-y q)=y^{2}-x^{2}$.
(q) Solve : $z^{2}\left(1+p^{2}+q^{2}\right)=k^{2}$.

UNIT-V

10. (a) Solve $\left(D^{2}-2 D D^{\prime}-8 D^{\prime 2}\right) z=\sqrt{2 x+3 y}$.
(b) Apply Charpit's method to solve $z^{2}=p q x y$.
11. (p) Solve $r-3 s+2 t=e^{2 x+3 y}+\sin (x-2 y)$.
(q) Solve $D\left(D-2 D^{\prime}-3\right) z=e^{x+2 y}$.

B.Sc. (Part-I) Semester-II Examination
 MATHEMATICS (New)
 Paper-III
 (Differential Equations : Ordinary \& Partial)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Question No. 1 is compulsory. Solve it in ONE attempt only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) The $D E \frac{d y}{d x}+P y=Q$, where P and Q are functions of x is known as \qquad .
(a) Exact DE
(b) Bernoulli's equation
(c) Linear DE of order one
(d) Homogeneous DE of order one.
(ii) The order of the DE $\frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}-y \sin x=0$ is \qquad \therefore
(a) 1
(b) 2
(c) 3
(d) 4
(iii) The particular solution of the $D E y^{\prime \prime}+P y^{\prime}+Q y=0$ is $y=e^{x}$ if \qquad .
(a) $P+x Q=0$
(b) $1+\mathrm{P}+\mathrm{Q}=0$
(c) $\mathrm{P}-\mathrm{P}+\mathrm{Q}=0$
(d) $\mathrm{m}^{2}+\mathrm{mP}+\mathrm{Q}=0$
(iv) The DE $\mathrm{y}^{\prime \prime}-4 y^{\prime}+4 y=0$ has roots which are \qquad .
(a) real and equal
(b) real and different
(c) complex
(d) None of these
(v) The integrating factor (IF) of the DE $\frac{d y}{d x}+2 x y=x$ is \qquad .
(a) x
(b) e^{x}
(c) $e^{x^{2}}$
(d) $\mathrm{e}^{-\boldsymbol{x}}$
(vi) The value of $\frac{1}{f(D)} e^{a x}, f(a) \neq 0$ is given by \qquad .
(a) $\frac{1}{f(D+a)} e^{a x}$
(b) $\frac{1}{f(D-a)} e^{a x}$
(c) $\frac{1}{f(a)} e^{a x}$
(d) $\frac{1}{f(-a)} e^{a x}$
(vii) The correct value of $\frac{1}{f\left(D, D^{\prime}\right)} e^{a x+b y}$ is \qquad .
(a) $\frac{1}{f(-a,-b)} e^{a x+b y}$
(b) $\frac{1}{f(a, b)} e^{a x+b y}$
(e) $\frac{1}{f\left(-a^{2},-b^{2}\right)} e^{a x+b y}$
(d) None of these
(viii) In PDE $P_{p}+Q_{q}=R$, where P, Q and R are functions of \qquad .
(a) x only
(b) y only
(c) x and y only
(d) x, y and z
(ix) Lagrange's form of the PDE of order one is \qquad .
(a) $P_{p}+Q_{q}=R$
(b) $P_{p}-Q_{q}=R$
(c) $P_{q}+Q_{p}=R$
(d) None of these
(x) The solution of the PDE $r=a^{2} t$ is \qquad .
(a) $z=F_{1}(y+a x)+F_{2}(y-a x)$
(b) $z=F_{1}(y-a x)+F_{2}(y-a x)$
(c) $z=F(y+a x)$
(d) None of these

UNIT-I

2. (a) Show that the $D E\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$ is exact and hence solve it. 5
(b) Solve the $\mathrm{DE} \cos \mathrm{xdy}=\mathrm{y}(\sin \mathrm{x}-\mathrm{y}) \mathrm{dx}$.
3. (p) Find the orthogonal trajectories of the family of coaxial circles $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+\mathrm{c}=0$, where g is a parameter.
(q) Solve the $D E(p-x y)\left(p-x^{2}\right)\left(p-y^{2}\right)=0$. 5

UNIT-II

4. (a) Solve the $D E \frac{d^{2} y}{d x^{2}}+a^{2} y=x \cos a x$.
(b) Solve the $D E\left(x^{2} D^{2}-3 x D+5\right) y=x^{2} \sin (\log x)$. 5
5. (p) Solve the $D E y^{\prime \prime}+3 y^{\prime}+2 y=4 x-20 \cos 2 x$.
(q) Solve the $\mathrm{DE} \frac{\mathrm{d}^{2} y}{d x^{2}}+4 y=e^{x}+\sin 2 x$.

UNIT-III

6. (a) Find the particular solution of $y^{\prime \prime}-2 y^{\prime}+y=2 x$ by variation of parameters.
(b) Solve the $D E \frac{d^{2} y}{d x^{2}}-\cot x \frac{d y}{d x}-y \sin ^{2} x=\cos x-\cos ^{3} x$ by changing the independent variable x to z .
7. (p) Solve the simultaneous DEs.

$$
\begin{equation*}
\frac{d x}{d t}+2 \frac{d y}{d t}-2 x+2 y=3 e^{t} ; 3 \frac{d x}{d t}+\frac{d y}{d t}+2 x+y=4 e^{2 t} \tag{5}
\end{equation*}
$$

(q) Solve the $D E x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=(2 x+1) x^{2}$.

UNIT-IV

8. (a) Solve the PDE $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(b) Form the PDE by eliminating the arbitrary functions from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
9. (p) Solve the PDE $p^{2}+q^{2}=x^{2}+y^{2}$.
(q) Solve the PDE

$$
\begin{equation*}
\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{-y\left(z^{2}+x^{2}\right)}=\frac{d z}{z\left(x^{2}+y^{2}\right)} \tag{5}
\end{equation*}
$$

UNIT-V
10. (a) Solve the $P D E r+s-6 t=y \cos x$.
(b) Solve the PDE $D\left(D-2 D^{\prime}-3\right) z=e^{x+2 y} 5$
11. (p) Solve the PDE $r-3 s+2 t=e^{2 x+3 y}+\sin (x-2 y)$. 5
(q) Solve the $\operatorname{PDE}\left(D^{2}-2 D^{\prime}-8 D^{\prime 2}\right) z=\sqrt{2 x+3 y}$. 5
INe.statil

B.Sc. (Part-I) Semester-II Examination
 MATHEMATICS
 (Differential Equations : Ordinary \& Partial)
 Paper-III

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(1) The order of the D.E. $\left(\frac{d^{3} y}{d x^{3}}\right)^{4}-\left(\frac{d y}{d x}\right)^{5}-y=0$ is :
(a) 1
(b) 2
(c) 3
(d) 4
(2) The particular solution of the D.E. $y^{\prime \prime}+P y^{\prime}+Q y=0$ is $y=e^{x}$ if :
(a) $P+x Q=0$
(b) $1+\mathrm{P}+\mathrm{Q}=0$
(c) $1-\mathrm{P}+\mathrm{Q}=0$
(d) $\mathrm{m}^{2}+\mathrm{Pm}+\mathrm{Q}=0$
(3) The roots of the auxiliary equations of the D.E. $y^{\prime \prime}-5 y^{\prime}+6 y=0$ are :

1
(a) Real and equal
(b) Complex
(c) Real and distinct
(d) None of these
(4) The D.E. Mdx $+N d y=0$ is exact if :
(a) $\frac{\partial M}{\partial \mathrm{x}}=\frac{\partial N}{\partial \mathrm{x}}$
(b) $\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{y}}$
(c) $\frac{\partial \mathrm{M}}{\partial \mathrm{x}}=\frac{\partial N}{\partial y}$
(d) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(5) The integrating factor of the D.E. $\frac{d y}{d x}-x y=x^{2}$ is :
(a) $\mathrm{e}^{-\mathrm{x}^{2} / 2}$
(b) $\mathrm{e}^{\mathrm{x}^{2} / 2}$
(c) e^{x}
(d) $\mathrm{e}^{-\mathrm{x}}$
(6) The PI of $f(D) y=e^{a x}$ is given by :
(a) $\frac{1}{f(D+a)} e^{x}$
(b) $\frac{1}{f(a)} e^{x} ; f(a) \neq 0$
(c) $\frac{1}{f(D-a)} e^{a x}$
(d) $\frac{1}{f(a)} e^{a x} ; f(a) \neq 0$
(7) Lagranges form of the PDE of order one is :
(a) $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
(b) $\mathrm{Pp}-\mathrm{Qq}=\mathrm{R}$
(c) $\mathrm{Pq}+\mathrm{Qp}=\mathrm{R}$
(d) None of these
(8) The solution of PDE $r=a^{2} t$ is:
(a) $z=F_{1}(y+a x)+F_{2}(y-a x)$
(b) $z=F_{1}(y-a x)+F_{2}(y-a x)$
(c) $z=F(y+a x)$
(d) None of these
(9) The general solution of the $\operatorname{PDEF}\left(\mathrm{D}, \mathrm{D}^{\prime}\right) \mathrm{z}=0$ is consist of :
(a) C.F. only
(b) P.I. only
(c) C.F. and P.I. both
(d) None of these
(10) The P.I. of the PDE $\left(2 \mathrm{D}-3 \mathrm{D}^{\prime}\right) \mathrm{z}=\mathrm{e}^{\mathrm{ry}}$ is :
(a) $\frac{1}{5} \mathrm{e}^{\mathrm{x}-\mathrm{y}}$
(b) $-\frac{1}{5} \mathrm{e}^{\mathrm{x}-\mathrm{y}}$
(c) e^{x-y}
(d) $-e^{x y}$

UNIT-I

2. (a) Solve the D.E. $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$.
(b) Show that D.E.

$$
\left(e^{y}+1\right) \cos x d x+e^{y} \sin y d y=0 \text { is exact }
$$

and hence solve it.
3. (p) Find the D.E. satisfied by the system of parabolas $y^{2}=4 a(x+a)$ and show that the orthogonal trajectories of the system belong to the system itself.
(q) Solve the D.E. $(p-x y)\left(p-x^{2}\right)\left(p-y^{2}\right)=0$.

UNIT-II

4. (a) Solve the D.E. $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}+\sin 2 x$. 5
(b) Solve the D.E. $\left(x^{2} D^{2}-3 x D+5\right) y=x^{2} \sin (\log x)$. 5
5. (p) Solve the D.E. $y^{\prime \prime}+3 y^{\prime}+2 y=e^{5 x}$. 5
(q) Solve the D.E. $y^{\prime \prime}+2 y^{\prime}+2 y=x^{2}$. 5
UNIT-III
6. (a) Solve the D.E. $y^{\prime \prime}-\mathrm{y}=\frac{2}{1+\mathrm{e}^{\mathrm{x}}}$ by the method of variation of parameters.
(b) Solve the simultaneous DEs $\frac{d x}{d t}+2 \frac{d y}{d t}-2 x+2 y=3 e^{t} ; 3 \frac{d x}{d t}+\frac{d y}{d t}+2 x+y=4 e^{2 t}$. 5
7. (p) Solve the D.E. by changing the independent variable $x^{6} y^{\prime \prime}+3 x^{5} y^{\prime}+a^{2} y=\frac{1}{x^{2}}$. $\quad 5$
(q) Solve the D.E. by reducing it to normal form $y^{\prime \prime}-2 x y^{\prime}+\left(x^{2}+2\right) y=e^{\left(x^{2}+2 x\right) / 2} \cdot 5$

UNIT-IV

8. (a) Solve the PDE $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(b) Solve the PDE $\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$.
9. (p) Solve :

$$
\begin{equation*}
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)} \tag{5}
\end{equation*}
$$

(q) Solve the $\operatorname{PDE} \mathrm{z}^{2}\left(1+\mathrm{p}^{2}+\mathrm{q}^{2}\right)=\mathrm{k}^{2}$.

UNIT-V

10. (a) Apply Charpit's method to solve $z^{2}=$ pqxy. 5
(b) Solve PDE $r-3 s+2 t=e^{2 x+3 y}+\sin (x-2 y)$. 5
11. (p) Solve the PDE $D\left(D-2 D^{\prime}-3\right) z=e^{x+2 y}$. 5
(q) Solve the PDE $r+s-6 t=y \cos x$.

B.Sc. (Part-I) Semester-II Examination MATHEMATICS

Paper-IV

(Vector Analysis and Solid Geometry)
Time : Three Hours]
N.B. :- (1) Question No. 1 is compulsory.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(i) Two non-zero vectors \bar{a} and \bar{b} are orthogonal iff \qquad .
(a) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
(b) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
(c) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}$
(d) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=-\overline{\mathrm{b}} \times \overline{\mathrm{a}}$

1
(ii) The dot product of any two non-zero vectors is a \qquad .
(a) Vector
(b) Scalar
(c) Both vector and scalar
(d) None of these
(iii) The equation of rectifying plane is \qquad .
(a) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{b}}=0$
(b) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{t}}=0$
(c) $(\overline{\mathrm{R}}-\overline{\mathrm{r}}) \cdot \overline{\mathrm{n}}=0$
(d) None of these
(iv) A line perpendicular to both $\overline{\mathrm{b}}$ and $\overline{\mathrm{n}}$ is called \qquad .
(a) Tangent
(b) Binormal
(c) Principal normal
(d) None of these
(v) A vector \bar{f} is irrotational if \qquad .
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) $\operatorname{curl} \overline{\mathrm{f}}=0$
(c) $\operatorname{div} \operatorname{grad} \overline{\mathrm{f}}=0$
(d) curl grad $\overline{\mathrm{f}}=0$
(vi) If $\bar{r}=x_{i}+y_{j}+z_{k}$ then $\operatorname{div} \bar{r}$ is equal to \qquad -
(a) Zero
(b) One
(c) Two
(d) Three
(vii) The curve of intersection of two spheres is a \qquad .
(a) Plane
(b) Circle
(c) Sphere
(d) None of these
(viii) The equation $x^{2}+y^{2}+z^{2}+4 x-6 y+10 z-11=0$ represents a sphere with centre $(-2,3,-5)$ then radius of sphere is \qquad .
(a) 7
(b) 11
(c) 38
(d) None of these
(ix) Every section of a right circular cone by a plane perpendicular to its axis is a \qquad .
(a) Plane
(b) Circle
(c) Sphere
(d) Cone
(x) The equation $a x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$ represent a cone if \qquad .
(a) $\frac{u^{2}}{a}+\frac{v^{2}}{b}+\frac{w^{2}}{c}=d$
(b) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}<d$
(c) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}>\mathrm{d}$
(d) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}=0$

UNIT-I

2. (a) Prove that:

$$
(\bar{a} \times \bar{b}) \cdot[(\bar{b} \times \bar{c}) \times(\bar{c} \times \bar{a})]=[\bar{a} \bar{b} \bar{c}]^{2}
$$

(b) Prove that necessary and sufficient condition for $\overline{\mathrm{f}}(\mathrm{t})$ to have constant magnitude is $\overline{\mathrm{f}} \cdot \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}=0$.
(c) Find the value of r from the equation $\frac{d^{2} \bar{r}}{d t^{2}}=\bar{a} t+\bar{b}$, given that both \bar{r} and $\frac{d \bar{r}}{d t}$ vanish when $\mathrm{t}=0$.
3. (p) If $\overline{\mathrm{r}}=\mathrm{a} \cos \mathrm{t} j+\mathrm{a} \sin \mathrm{t} \mathrm{j}+\mathrm{at} \tan \alpha \mathrm{k}$, then find

$$
\begin{equation*}
|\dot{\bar{r}} \times \ddot{\vec{r}}| \text { and }[\dot{\vec{r}}, \ddot{\mathrm{r}}, \ddot{\mathrm{r}}] \tag{4}
\end{equation*}
$$

(q) If $\overline{\mathrm{A}}=x^{2} y z \overrightarrow{\mathrm{i}}-2 x z^{3} \overrightarrow{\mathrm{j}}+x z^{2} \overrightarrow{\mathrm{k}}$ and $\overline{\mathrm{B}}=2 z \overrightarrow{\mathrm{i}}+4 \overrightarrow{\mathrm{j}}-\mathrm{x}^{2} \overrightarrow{\mathrm{k}}$, then find $\frac{\partial^{2}}{\partial x \partial y}(\overline{\mathrm{~A}} \times \overline{\mathrm{B}})$ at (1, 0, -2) 3
(r) Prove that $\overline{\mathrm{i}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{i}})+\overline{\mathrm{j}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{j}})+\overrightarrow{\mathrm{k}} \times(\overline{\mathrm{a}} \times \overrightarrow{\mathrm{k}})=2 \overline{\mathrm{a}}$. 3

UNIT-II
4. (a) For the curve $\overline{\mathrm{r}}=\overline{\mathrm{r}}(\mathrm{t})$, prove that

$$
\begin{equation*}
\mathrm{K}=\frac{|\dot{\mathrm{r}} \times \ddot{\mathrm{r}}|}{|\dot{\overline{\mathrm{r}}}|^{3}} \text { and } \mathrm{T}=\frac{[\dot{\mathrm{r}}, \ddot{\mathrm{r}}, \ddot{\mathrm{r}}]}{|\dot{\mathrm{r}} \times \ddot{\mathrm{r}}|^{2}} \text {. } \tag{4}
\end{equation*}
$$

(b) The parametric equations of a cycloid are $x=a(0-\sin \theta), y=a(1-\cos 0)$, then show that $\rho^{2}=8 a y$.
(c) Prove that:

$$
\begin{equation*}
\left(x^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime \prime}\right)^{2}+\left(z^{\prime \prime \prime}\right)^{2}=\frac{1}{\rho^{2} \sigma^{2}}+\frac{1+\rho^{\prime 2}}{\rho^{4}} \tag{3}
\end{equation*}
$$

5. (p) Find the curvature and torsion of the circular helix $x=a \cos 0, y=a \sin 0, z=c 0$ at any point 0 .
(q) Show that necessary and sufficient condition that a curve be a straight line is $\mathrm{k}=0.3$
(r) If the tangent and binormal at a point of a curve make angles 0 and ϕ respectively with a fixed direction, then show that

$$
\begin{equation*}
\frac{\sin \theta \mathrm{d} 0}{\sin \phi \mathrm{~d} \phi}=\frac{-\mathrm{K}}{\mathrm{~T}} \tag{3}
\end{equation*}
$$

UNIT-III

6. (a) If $\overline{\mathrm{F}}=\left(3 x^{2}+64\right) \overrightarrow{\mathrm{i}}-14 y z \vec{j}+20 x z^{2} \vec{k}$ then evaluate $\int_{c} \overline{\mathrm{~F}}$. d \bar{r} from $(0,0,0)$ to $(1,1,1)$ along the path $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$.
(b) Find $\nabla \phi$, if $\phi=\frac{1}{2} \log \left(x^{2}+y^{2}+z^{2}\right)$.
(c) Find the work done in moving a particle once round the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$.
7. (p) Verify Green's theorem in the plane for $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$. where C is the boundary of the region R bounded by $y=\sqrt{x}, y=x^{2}$.
(q) Find the constants a, b, c so that $\vec{f}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}+(4 x+c y+2 z) \vec{k}$ is irrotational.

UNIT-IV

8. (a) Find the equation of the sphere that passes through the circle $x^{2}+y^{2}+z^{2}-2 x+3 y-4 z+6=0,3 x-4 y+5 z-15=0$ and cuts the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y-6 z+11=0$ orthogonally.
(b) Find the equation of the sphere which passes through the points $(1,-3,4),(1,-5,2)$ and $(1,-3,0)$ and whose centre lies on the plane $x+y+z=0$.
9. (p) Prove that the two spheres

$$
x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0
$$

and $x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0$
will be orthogonal if $2 \mathrm{u}_{1} \mathrm{u}_{2}+2 \mathrm{v}_{1} \mathrm{v}_{2}+2 \mathrm{w}_{1} \mathrm{w}_{2}=\mathrm{d}_{1}+\mathrm{d}_{2}$
(q) Find the equation of a sphere which passes through origin and intercepts lengths a, b and c on the axes respectively.

UNIT-V

10. (a) Find the equation of a right circular cone whose vertex is (α, β, γ), the semivertical angle α and the axis $\frac{x-\alpha}{\ell}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$.
(b) Find the equation of right circular cone whose vertex is (2, $-3,5$), axis makes equal angles with the coordinate axes and semivertical angle is 30°.
11. (p) Find the equation of the right circular cylinder whose radius is r and axis the line

$$
\begin{equation*}
\frac{x-x^{\prime}}{\ell}=\frac{y-y^{\prime}}{m}=\frac{z-z^{\prime}}{n} \tag{5}
\end{equation*}
$$

(q) Find the equation of right circular cylinder of radius 2 and whose axis is the line

$$
\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2}
$$

B.Sc. (Part-I) Semester-II Examination
 MATHEMATICS
 (Vector Analysis and Solid Geometry)
 Paper-IV

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Question No. 1 is compulsory.
(2) Attempt ONE question from each unit.

1. Choose correct alternative :
(i) The cross product of any two non-zero vectors is a :
(a) Scalar
(b) Vector
(c) Both Scalar and Vector
(d) None of these
(ii) Two non-zero vectors \bar{a} and \bar{b} are parallel iff :
(a) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=0$
(b) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=0$
(c) $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{a}}$
(d) $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=-\overline{\mathrm{b}} \times \overline{\mathrm{a}}$
(iii) The equation of osculating plane is :
(a) $(\mathrm{R}-\mathrm{r}) \cdot \overline{\mathrm{t}}=0$
(b) $(\mathrm{R}-\mathrm{r}) \cdot \overline{\mathrm{b}}=0$
(c) $(\mathrm{R}-\mathrm{r}) \cdot \overline{\mathrm{n}}=0$
(d) None of these
(iv) A line perpendicular to both $\overline{\mathrm{t}}$ and $\overline{\mathrm{n}}$ is called :
(a) tanget line
(b) binormal line
(c) principal normal line
(d) None of these
(v) A vector $\overline{\mathrm{f}}$ is solenoidal if:
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) curl $\overline{\mathrm{f}}=0$
(c) $\operatorname{div} \overline{\mathrm{f}} \neq 0$
(d) $\operatorname{curl} \overline{\mathrm{f}} \neq 0$
(vi) If $\bar{r}=x_{i}+y_{j}+z_{k}$, then $\operatorname{div} \bar{r}$ is equal to:
(a) Zero
(b) One
(c) Two
(d) Three
(vii) A plane section of a sphere is a :
(a) Sphere
(b) Circle
(c) Both Sphere and Circle
(d) None of these
(viii) The equation $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ represents a real sphere if:
(a) $\mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2}=\mathrm{d}$
(b) $u^{2}+v^{2}+w^{2}>d$
(c) $u^{2}+v^{2}+w^{2}<d$
(d) $\mathrm{u}^{2}+\mathrm{v}^{2}+\mathrm{w}^{2}=0$
(ix) In Right Circular Cylinder, the radius of the circle is the radius of the :
(a) Circle
(b) Sphere
(c) Cylinder
(d) Cone
(x) Every section of a right circular cone by a plane perpendicular to its axis is a :
(a) Plane
(b) Circle
(c) Sphere
(d) Cone

UNIT-I

2. (a) Prove that a necessary and sufficient condition that $\bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \times \bar{b}) \times \bar{c}$ is $(\bar{a} \times \overline{\mathrm{c}}) \times \overline{\mathrm{b}}=0$.
(b) If f and g are functions of x, y, z then prove that $\frac{\partial}{\partial x}(\bar{f} \cdot \overline{\mathrm{~g}})=\overline{\mathrm{f}} \cdot \frac{\partial \overline{\mathrm{g}}}{\partial \mathrm{x}}+\frac{\partial \overline{\mathrm{f}}}{\partial \mathrm{x}} \cdot \overline{\mathrm{g}}$.
(c) If $\overrightarrow{\mathrm{r}}(\mathrm{t})=5 \mathrm{t}^{2} \overrightarrow{\mathrm{i}}+\mathrm{t} \overrightarrow{\mathrm{j}}-\mathrm{t}^{3} \overrightarrow{\mathrm{k}}$, then prove that $\int_{1}^{2} \overline{\mathrm{r}} \times \frac{\mathrm{d}^{2} \overrightarrow{\mathrm{r}}}{\mathrm{dt}^{2}} \mathrm{dt}=-14 \overrightarrow{\mathrm{i}}+75 \overrightarrow{\mathrm{j}}-15 \overrightarrow{\mathrm{k}}$.
3. (p) If $\bar{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, \vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}, \bar{c}=c_{1} \vec{i}+c_{2} \vec{j}+c_{3} \vec{k}$, then prove that $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\overline{\mathrm{c}} \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$.
(q) If $\overline{\mathrm{f}}=2 \mathrm{t}^{2} \overrightarrow{\mathrm{i}}-\mathrm{t} \overrightarrow{\mathrm{j}}+2 \overrightarrow{\mathrm{k}}, \overline{\mathrm{g}}=7 \overrightarrow{\mathrm{i}}+\mathrm{t}^{2} \overline{\mathrm{j}}-\mathrm{t} \overrightarrow{\mathrm{k}}$, then find $\frac{\mathrm{d}}{\mathrm{dt}}(\overrightarrow{\mathrm{f}} \times \overline{\mathrm{g}})$.
(r) Prove that:

$$
\begin{equation*}
(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{d}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{~d}})[\overline{\mathrm{a}}, \overline{\mathrm{~b}}, \overline{\mathrm{c}}] \tag{3}
\end{equation*}
$$

UNIT-II
4. (a) Show that the Serret-Frenet formulae at a point can be written in the form $\overline{\mathrm{t}}^{\prime}=\overline{\mathrm{d}} \times \overline{\mathrm{t}}, \overline{\mathrm{n}}^{\prime}=\overline{\mathrm{d}} \times \overline{\mathrm{n}}, \overline{\mathrm{b}}^{\prime}=\overline{\mathrm{d}} \times \overline{\mathrm{b}}$ where $\overline{\mathrm{d}}=\tau \overline{\mathrm{t}}+\mathrm{k} \overline{\mathrm{b}}$ is a Darboux's vector.
(b) Prove that helices are the only twisted curves whose Darboux's vector has a constant direction.
5. (p) State and prove Serret-Frenet formulae. 4
(q) Find the equations of the tangent to the curve $x=3 t, y=3 t^{2}, z=2 t^{3}$ at the point $t=1$.
(r) Find the curvature and torsion of the circular helix $x=a \cos \theta, y=a \sin \theta, z=c \theta$ at any point θ.

UNIT--III

6. (a) If $\overline{\mathrm{F}}=\left(3 x^{2}+6 y\right) \mathrm{i}-14 y z j+20 x z^{2} k$, then evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the path $x=t, y=t^{2}, z=t^{3}$.
(b) If $\overline{\mathrm{r}}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$ then find:
(i) $\operatorname{grad}|\overline{\mathbf{r}}|$
(ii) div. $\overline{\mathrm{r}}$
(iii) $\operatorname{curl} \overline{\mathrm{r}}$.
7. (p) Verify Green's theorem in the plane for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
(q) If $\bar{f}=x^{2} z \vec{i}-2 y^{3} z^{2} \vec{j}+x y^{2} z \vec{k}$, then find $\operatorname{div} \bar{f}$ and curl \bar{f} at $(1,-1,1)$.
(r) Find the work done in moving a particle once around a circle C in the xy plane of radius 2 and centre $(0,0)$ and if the force field is given by $f=3 x y \vec{i}-y \vec{j}+2 z x \vec{k}$.

UNIT-IV

8. (a) Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the radius of the common circle is $\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}}}$.
(b) Find the equation to the sphere which passes through the points $(0,0,0),(0,1,-1)$, $(-1,2,0)$ and $(1,2,3)$.
9. (p) Show that the spheres:

$$
\begin{align*}
& x^{2}+y^{2}+z^{2}+2 x-6 y-14 z+1=0 \text { and } \\
& x^{2}+y^{2}+z^{2}-4 x-8 y+2 z+5=0 \text { are orthogonal. } \tag{5}
\end{align*}
$$

(q) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$.

UNIT-V

10. (a) Find the equation of right circular cylinder which passes through the circle $x^{2}+y^{2}+z^{2}=9, x-y+z=3$.
(b) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$.
11. (p) Prove that the equation of a cone with vertex at the origin is homogeneous.
(q) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
.

B.Sc. (Part-I) Semester-II Examination MATHEMATICS
 Paper-IV

(Vector Analysis \& Solid Geometry)
Time : Three Hours]
[Maximum Marks : 60
N.B. :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Solve ONE question from each unit.

1. Choose correct alternative of the following :-
(i) Three vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are coplaner iff \qquad .
(a) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\overline{0}$
(b) $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=0$
(c) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathbf{c}}=\overline{0}$
(d) $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times \overline{\mathbf{c}}=\overline{0}$
(ii) A vector $\overline{\mathrm{f}}$ is irrotational if \qquad .
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) $\operatorname{div} \overline{\mathrm{f}} \neq 0$
(c) $\operatorname{curl} \overline{\mathrm{f}}=\overline{0}$
(d) None of these
(iii) If $\overrightarrow{\mathrm{r}}=\mathrm{t} \overrightarrow{\mathrm{i}}+\sin t \overrightarrow{\mathrm{j}}+\left(\mathrm{t}^{2}-1\right) \overrightarrow{\mathrm{k}}$, then $\dot{\vec{r}}$ at $\mathrm{t}=0$ is \qquad .
(a) $(0,0,1)$
(b) $(0,1,0)$
(c) $(1,1,0)$
(d) $(1,0,1)$
(iv) For any space curve, $\overrightarrow{\mathrm{t}}^{\prime} \cdot \overrightarrow{\mathrm{b}}^{\prime}=$ \qquad .
(a) k
(b) J
(c) kJ
(d) -kJ
(v) If $\overline{\mathrm{r}}=\overline{\mathrm{r}}(\mathrm{t})$ is equation of space curve, then the curvature k is equal to \qquad .
(a) $\frac{[\dot{\bar{r}} \ddot{\bar{r}} \ddot{\bar{r}}]}{|\dot{\bar{r}} \times \ddot{\bar{r}}|^{2}}$
(b) $\frac{\dot{\dot{r}}}{|\dot{\dot{\mathbf{r}}}|}$
(c) $\frac{\dot{\bar{r}} \times \ddot{\vec{r}}}{|\dot{\vec{r}} \times \ddot{\vec{r}}|}$
(d) $\frac{|\dot{\bar{r}} \times \ddot{\bar{r}}|}{|\dot{\bar{r}}|^{3}}$
(vi) If $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$, then div. \bar{r} is \qquad .
(a) 3
(b) -2
(c) 0
(d) -1
(vii) A vector $\overline{\mathrm{f}}$ is solenoidal if \qquad .
(a) $\operatorname{div} \cdot \overline{\mathrm{f}}=0$
(b) $\operatorname{curl} \overline{\mathrm{f}}=\overline{0}$
(c) div. $\operatorname{grad} \overline{\mathrm{f}}=0$
(d) curl $\operatorname{grad} \overline{\mathrm{f}}=\overline{0}$
(viii) Every section of right circular cone by a plane perpendicular to its axis is \qquad .
(a) plane
(b) circle
(c) sphere
(d) None of these
(ix) The equation $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ represent a real sphere if \qquad .
(a) $u^{2}+v^{2}+w^{2}=d$
(b) $u^{2}+v^{2}+w^{2}>d$
(c) $u^{2}+v^{2}+w^{2}<d$
(d) $u^{2}+v^{2}+w^{2}=0$
(x) Two non-parallel planes intersect in a \qquad .
(a) plane
(b) point
(c) line
(d) circle

UNIT-I

2. (a) If vectors \bar{f} and \bar{g} are vector functions of t, then prove that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\overline{\mathrm{f}} \circ \overline{\mathrm{~g}})=\overline{\mathrm{f}} \circ \frac{\mathrm{~d} \overline{\mathrm{~g}}}{\mathrm{dt}}+\frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}} \circ \overline{\mathrm{~g}} .
$$

(b) Prove that $\overline{\mathrm{r}}=\overline{\mathrm{a}} \mathrm{e}^{\mathrm{mt}}+\overline{\mathrm{b}} \mathrm{e}^{\mathrm{nt}}$, where $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are unit vectors is the solution of

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \overline{\mathrm{r}}}{\mathrm{dt}^{2}}-(\mathrm{m}+\mathrm{n}) \frac{\mathrm{d} \overline{\mathrm{r}}}{\mathrm{dt}}+\mathrm{mn} \overline{\mathrm{r}}=0 \tag{3}
\end{equation*}
$$

(c) If $\bar{f}=2 t^{2} \vec{i}-t \vec{j}+2 \vec{k}$ and $\bar{g}=7 \vec{i}+t^{2} \vec{j}-t \vec{k}$, then find $\frac{d}{d t}(\bar{f} \times \bar{g})$.
3. (p) Prove that :

$$
\begin{equation*}
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{c}} \tag{4}
\end{equation*}
$$

(q) If $\bar{a}=t \vec{i}-3 \vec{j}+2 t \vec{k}, \bar{b}=\vec{i}-2 \vec{j}+2 \vec{k}$ and $\bar{c}=3 \vec{i}+t \vec{j}-\vec{k}$, then evaluate $\vec{a} \cdot(\bar{b} \times \bar{c})$. 3
(r) Prove that:

$$
\begin{equation*}
(\bar{c} \times \bar{a}) \times(\bar{a} \times \bar{b})=[\bar{a} \bar{b} \bar{c}] \bar{a} . \tag{3}
\end{equation*}
$$

UNIT-II

4. (a) State and prove Frenet-Serret formulae.
(b) If tangent and binormal at a point of a curve makes angle θ, ϕ respectively with fixed direction, then show that :

$$
\begin{equation*}
\frac{\sin \theta \mathrm{d} \theta}{\sin \phi \mathrm{~d} \phi}=\frac{-\mathrm{k}}{\mathrm{~J}} \tag{4}
\end{equation*}
$$

5. (p) Prove that $\left[\vec{r}^{\prime \prime}, \overrightarrow{\mathrm{r}}^{\prime \prime \prime}, \overrightarrow{\mathrm{r}}^{m \prime}\right]=\mathrm{k}^{3}\left[\mathrm{~kJ}-\mathrm{k}^{\prime} \mathrm{J}\right]$.
(q) Show that the necessary and sufficient condition that a curve to be a straight line is $\mathrm{k}=0$.
(r) Prove that Darboux vector $\overline{\mathrm{d}}$ has fixed direction if and only if k / J is constant. 4

UNIT-III

6. (a) Find the work done in moving a particle along the parabola $y^{2}=x$ in the $x y$ plane from $(0,0)$ to $(1,1)$ if the force field is given by :

$$
\begin{equation*}
\overline{\mathrm{f}}=(2 \mathrm{x}+\mathrm{y}-7 \mathrm{z}) \overrightarrow{\mathrm{i}}+\left(7 \mathrm{x}-2 \mathrm{y}+2 \mathrm{z}^{2}\right) \overrightarrow{\mathrm{j}}+\left(3 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}^{3}\right) \overrightarrow{\mathrm{k}} \tag{5}
\end{equation*}
$$

(b) Verify Green's theorem in the plane for,

$$
\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y
$$

Where c is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
7. (p) If $\overline{\mathrm{F}}=\left(3 x^{2}+6 y\right) \vec{i}-14 y z \vec{j}+20 x z^{2} \vec{k}$, then evaluate $\int_{c} \overline{\mathrm{~F}} \cdot \mathrm{~d} \overline{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the path $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$.
(q) Prove that $r^{n} \bar{r}$ is irrotational. Find the value of n when it is solenoidal.

UNIT-IV

8. (a) A sphere of radius k passes through the origin and meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$. 5
(b) Prove that the two spheres

$$
x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0
$$

and $x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0$
will be orthogonal if $2 u_{1} u_{2}+2 v_{1} v_{2}+2 w_{1} w_{2}=d_{1}+d_{2}$.
9. (p) Find the equation of the sphere that passes through the circle $x^{2}+y^{2}+z^{2}-2 x+3 y$ $-4 z+6=0,3 x-4 y+5 z-15=0$ and cuts the sphere $x^{2}+y^{2}+z^{2}+2 x+4 y$ $-6 z+11=0$ orthogonally.
(q) Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the radius of the common circle is $\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\sqrt{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}}}$.

UNIT-V

10. (a) Find the equation of the right circular cylinder of radius 2 and whose axis is the line

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{2} \tag{5}
\end{equation*}
$$

(b) Find the equation of the right circular cylinder whose radius is r and axis the line :

$$
\begin{equation*}
\frac{x-x^{\prime}}{1}=\frac{y-y^{\prime}}{m}=\frac{z-z^{\prime}}{n} \tag{5}
\end{equation*}
$$

11. (p) Find the equation of a right circular cone whose vertex is (α, β, γ), the semivertical angle α and the axis $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$.
(q) Find the equation of right circular cone whose vertex is $(2,-3,5)$, axis makes equal angles with the coordinate axes and semi vertical angle is 30°.

B.Sc. (Part-I) Semester-II Examination

 2S : MATHEMATICS

 2S : MATHEMATICS
 Vector Analysis \& Solid Geometry
 Paper-IV

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. $\mathbf{1}$ is compulsory and attempt it once only.
(2) Solve ONE question from each unit.

1. Choose the correct alternatives of the following :
(1) Volume of parallelepiped with $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ as edge vectors is :
(a) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
(b) $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
(c) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}$
(d) $(\overline{\mathrm{a}}+\overline{\mathrm{b}}) \times \overline{\mathrm{c}}$
(2) Scalar triple product containing two repeated vectors is :
(a) Less than zero
(b) Equal to zero
(c) Not equal to zero
(d) Greater than zero
(3) The curve of intersection of two spheres is:
(a) Circle
(b) Point
(c) Line
(d) Plane
(4) Every homogeneous equation of second degree in x, y and z, represent a \qquad whose vertex is at the origin.
(a) Cone
(b) Cylinder
(c) Sphere
(d) None of these
(5) A helix is a twisted curve whose tangent makes a constant angle with a :
(a) Tangent
(b) Plane
(c) Fixed direction
(d) Binormal
(6) The plane which passes through $\mathrm{P}(\bar{\varepsilon})$ and contains binormal and tangent is said to be : 1
(a) Osculating plane
(b) Rectifying plane
(c) Normal plane
(d) None of these
(7) If $\bar{\varepsilon}=\bar{\varepsilon}(t)$ is equation of space curve, then curvature is equal to :
(a) $\frac{[\dot{\bar{\varepsilon}} \ddot{\bar{\varepsilon}} \ddot{\bar{\varepsilon}}]}{|\dot{\bar{\varepsilon}} \times \stackrel{\ddot{\varepsilon}}{ }|^{2}}$
(b) $\frac{\dot{\bar{\varepsilon}}}{|\dot{\bar{\varepsilon}}|}$
(c) $\frac{\dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}}}{|\dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}}|}$
(d) $\frac{|\dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}}|}{|\dot{\bar{\varepsilon}}|^{3}}$
(8) If $\bar{\varepsilon}=x \bar{i}+y \bar{j}+z \overline{\mathrm{k}}$, then $\operatorname{div} \bar{\varepsilon}=$
(a) 3
(b) -2
(c) 0
(d) -1
(9) A vector $\overline{\mathrm{f}}$ is said to be solenoidal if :
(a) $\operatorname{div} \overline{\mathrm{f}}=0$
(b) $\operatorname{curl} \overline{\mathrm{f}}=0$
(c) $\operatorname{grad} \overline{\mathrm{f}}=0$
(d) $\nabla \cdot \nabla \overline{\mathrm{f}}=0$
(10) A necessary and sufficient condition for $\vec{f}(t)$ to have constant magnitude is :
(a) $|\overline{\mathrm{f}}|=0$
(b) $\overline{\mathrm{f}} \cdot \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}=0$
(c) $\overline{\mathrm{f}} \times \frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}}=0$
(d) None of these

UNIT-I

2. (a) Prove that:

$$
\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{c}} .
$$

(b) Prove that:

$$
[\bar{\ell} \overline{\mathrm{m}} \overline{\mathrm{n}}][\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=\left|\begin{array}{ccc}
\bar{\ell} \cdot \overline{\mathrm{a}} & \bar{\ell} \cdot \overline{\mathrm{~b}} & \bar{\ell} \cdot \overline{\mathrm{c}} \\
\overline{\mathrm{~m}} \cdot \overline{\mathrm{a}} & \overline{\mathrm{~m}} \cdot \overline{\mathrm{~b}} & \overline{\mathrm{~m}} \cdot \overline{\mathrm{c}} \\
\overline{\mathrm{n}} \cdot \overline{\mathrm{a}} & \overline{\mathrm{n}} \cdot \overline{\mathrm{~b}} & \overline{\mathrm{n}} \cdot \overline{\mathrm{c}}
\end{array}\right| .
$$

(c) If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be three unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\overline{\mathrm{b}}}{2}$, find the angles which $\overline{\mathrm{a}}$ makes with $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ being non-parallel.
3. (p) If $\overline{\mathrm{f}}$ and $\overline{\mathrm{g}}$ are vector functions of t , then prove that:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\overline{\mathrm{f}} \times \overline{\mathrm{g}})=\overline{\mathrm{f}} \times \frac{\mathrm{d} \overline{\mathrm{~g}}}{\mathrm{dt}}+\frac{\mathrm{d} \overline{\mathrm{f}}}{\mathrm{dt}} \times \overline{\mathrm{g}} . \tag{4}
\end{equation*}
$$

(q) If $\overline{\mathrm{a}}=\mathrm{t} \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+2 \mathrm{t} \overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}-2 \overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=3 \overline{\mathrm{i}}+\mathrm{t} \overline{\mathrm{j}}-\overline{\mathrm{k}}$, evaluate $\int_{1}^{2} \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \mathrm{dt}$.
(r) If $\bar{\varepsilon}=\mathrm{a} \operatorname{cost} \overline{\mathrm{i}}+\mathrm{a} \operatorname{sint} \overline{\mathrm{j}}+\mathrm{at} \tan \alpha \overline{\mathrm{k}}$, find $|\dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}}|$ and $[\dot{\bar{\varepsilon}} \dot{\bar{\varepsilon}} \overline{\bar{\varepsilon}}]$.

UNIT-II

4. (a) Prove that necessary and sufficient condition that a curve be helix is that ratio of torsion to curvature is constant.
(b) Prove that the position vector of the current point on a curve satisfies the differential equation :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{ds}}\left(\sigma \frac{\mathrm{~d}}{\mathrm{ds}}\left(\rho \bar{\varepsilon}^{11}\right)+\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\sigma}{\rho} \bar{\varepsilon}^{1}\right)+\frac{\rho}{\sigma} \bar{\varepsilon}^{11}=0\right) . \tag{5}
\end{equation*}
$$

5. (p) State and prove Serret-Frenet formulae.
(q) For a point of the curve of intersection of the surfaces $x^{2}-y^{2}=c^{2}, y=x \tan h(z / c)$, prove that $\rho=-6=2 x^{2} / \mathrm{c}$.

UNIT-III

6. (a) Find a unit normal to the surface $x y^{2}+2 y z=4$ at the point $(-2,2,3)$.
(b) If $\phi=3 x^{2} y-y^{3} z^{2}$, find $\operatorname{grad} \phi$ at the point $(1,-2,-1)$.
(c) A vector field is given by $\overline{\mathrm{F}}=\sin \mathrm{y} \overline{\mathrm{i}}+\mathrm{x}(1+\cos \mathrm{y}) \overline{\mathrm{j}}$. Evaluate the line integral over the circular path $x^{2}+y^{2}=a^{2}, z=0$.
7. (p) Find the work done in moving a particle in a force field given by $\overline{\mathrm{F}}=2 x y \overline{\mathrm{i}}+3 \mathrm{z} \overline{\mathrm{j}}-6 x \overline{\mathrm{k}}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=\mathrm{t}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=0$ to $\mathrm{t}=1$.
(q) Let R be a closed bounded region in the xy-plane whose boundary is a simple closed curve c which may be cut by any line parallel to the coordinate axes in at most two points. Let $M(x y)$ and $N(x y)$ be functions that are continuous and have continuous partial derivatives $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial x}$ in R. Then prove that :

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{C}(M d x+N d y)
$$

where C is traversed in the positive direction.

UNIT-IV

8. (a) Prove that the two spheres $x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{i} y+2 w_{1} z+d_{1}=0$ and $x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0$ will be orthogonal if $2 \mathrm{u}_{1} \mathrm{u}_{2}+2 \mathrm{v}_{1} \mathrm{v}_{2}+2 \mathrm{w}_{1} \mathrm{w}_{2}=\mathrm{d}_{1}+\mathrm{d}_{2}$.
(b) A sphere of radius K passes through the origin and meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the centroid of the triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
9. (p) Find the coordinates of the centre and radius of the circle :

$$
\begin{equation*}
x+2 y+2 z=15, x^{2}+y^{2}+z^{2}-2 y-4 z=11 \tag{5}
\end{equation*}
$$

(q) Find the equation of two spheres which pass through the circle $x^{2}+y^{2}+z^{2}=5$, $x+2 y+3 z=3$ and touch $4 x+3 y-15=0$.

UNIT-V

10. (a) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and the guiding curve is the ellipse $\mathrm{x}^{2}+2 \mathrm{y}^{2}=1, \mathrm{z}=3$.
(b) Find the equation of the right circular cylinder of radius 4 , whose axis passes through the origin and makes equal angles with the co-ordinate axes.
11. (p) Prove that every homogeneous equation of second degree in x, y and z represents a cone whose vertex is at the origin.
(q) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line $x=-2 y=z$.
