B.Sc. Part-III (Semester-VI) Examination

MATHEMATICS

(Linear Algebra)

					Paper—X	Γ		
Time	: Tl	nree	Hours]				[Maximum Marks:	: 60
Note	:	(1)	Question 1	No. 1 is compu	alsory and at	temp	npt this question once only.	
		(2)	Attempt O	NE question f	from each un	it.		
1.	Choc	se 1	the correct	alternative (1	mark each):			
٠	(i)	S is	a non-emp	ty subset of ve	ctor space V,	the	en the smallest subspace of V contain	ning
)	S is	:					
		(a)	S			(b)	{S}	
		(c)	[S]			(d)	None	
	(ii)	Let	U and V be	e finite dimensi	ional vector s	space	ces and $T: U \rightarrow V$ be a linear map of	one
	1	one	and onto, t	then:				
		(a)	$\dim U = c$	lim V		(b)	dim U ≠ dim V	
		(c)	U = V			(d)	U ≠ d	
	(iii)	Let	W is subsp	ace of vector s	space V. The	n {f	$\{f \in \hat{V}/f(w) = 0, \forall w \in W\}$ is called	as
		(a)	Hilatory o	f W		(b)	Annihilator of W	
		(c)	Dual space	e of W		(d)	None	
	(iv)	The	normalized	1 vector (1, -2	, 5) is:			
		(a)	(1, -2, 5)			(b)	$\left(\frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{.5}{\sqrt{30}}\right)$	
	ĵ	(c)	$\left(\frac{1}{2}, -1, \frac{5}{2}\right)$			(d)	$\left(\frac{1}{5}, \frac{-2}{5}, 1\right)$	
	(v)	In I	PS V(F) the	e relation u	$+ \mathbf{v} \parallel^2 + \parallel \mathbf{u}$	- v	$ v ^2 = 2 (u ^2 + v ^2)$ is called as	:
		(a)	Schwartz i	inequality		(b)	Triangle law	
		(c)	Parallelogi	ram law		(d)	Bessels inequality	
	(vi)	For	two subspa	aces U and W	of $V(F)$, $V =$	U	⊕ W ⇔	
		(2)	$U \cap W =$	(0)		(h)	$\mathbf{V} = \mathbf{H} + \mathbf{W}$	

(d) None of these

(c) $U \cap W = \{0\}$ and V = U + W

		(a) T-1(B) is submodule of N	(b)	T-1(B) is submocule of M
		(c) T-1(B) is kernel of R-homomorphism	(d)	$T^{-1}(B) = T(M)$
	(viii) If $T: U \to V$ then the set $\{T(u) \mid u \in U\}$	} =	
		(a) Ker Γ	(b)	R(u)
		(c) R(T)	(d)	None of these
	(ix)	If $\ V\ = 1$, then V is called:		
		(a) Normalised	(b)	Orthonormal
		(c) Scalar inner product	(d)	Standard inner product
	(x)	If \hat{V} is n-dimensional, then the dimensional	on of	V is:
		(a) Less than n	(b)	Greater than n
		(c) Equal n	(d)	Zero 10
		UNIT-	I	
2.	(a)	Let U and W be two subspaces of a ve-	ctor	space V and $Z = U + W$. Then prove
		that $Z = U \oplus W$ iff $z \in Z$, $z = u + v$	w is	unique representation for $u \in U$ and
		$w \in W$.		5
	(b)	The contract of the contract o	1, 1	182 907
2	/ \	V ₄ .		5
3.	(p)	If U and W are finite dimensional subspa		The second secon
		$\dim(U + W) = \dim U + \dim W - \dim W$		
	(q)	Let R ⁺ be the set of all positive real numb	ers.	Define the operations of addition \oplus and
		scalar multiplication \otimes as follows: $u \oplus v = u \cdot v + u, v \in \mathbb{R}^+$		
		and $\alpha \otimes u = u^{\alpha}, \forall u \in R^{+} \text{ and } \alpha \in R$		
		Prove that R ⁺ is a real vector space.		£ .
		UNIT-	п	5
4.	(a)			II . V has a linear than prove that .
7.	(4)	If U, V is a vector space over a field F and $T(\alpha, \mu, +\alpha, \mu, +\alpha, \mu) = \alpha$, $T(\mu) + \alpha$		
		$T(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n) = \alpha_1 T(u_1) + \alpha_1 T(u_2) + \alpha_2 T(u_1) + \alpha_2 T(u_2)$		
			~	$u_i \in U$, $\alpha_i \in F$, $1 \le i \le n$ and $n \in N$.
	(b)	Let $T: V_4 \to V_3$ be a linear map define	ed by	
		$T(e_3) = (1, 0, 0), T(e_4) = (1, 0, 1).$	0,	(1, 1), (1, 1), (1, -1, 1),
		Verify Rank-nullity theorem.		4

(vii) Let $T:M\to N$ be an R-homomorphism. If B is a submodule of N, then :

- (c) Find the matrix of the linear map $T: V_2 \to V_3$ defined by T(x, y) = (-x + 2y, y, -3x + 3y) related to the bases $B_1 = \{(1, 2), (-2, 1)\}$ and $B_2 = \{(-1, 0, 2), (1, 2, 3), (1, -1, 1)\}$.
- (p) Let U and V be vector spaces over the same field F. Then prove that function T: U → V is linear iff T(αu + βv) = αT(u) + βT(v), ∀ α, β ∈ F and u, v ∈ U.
 - (q) If matrix of a linear map T with respect to bases B, and B, is:

$$\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

where $B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$ and $B_2 = \{(1, 0), (2, -1)\}$, then find T(x, y, z).

UNIT-III

6. (a) Let V be the space of all real valued continuous functions of real variable. Define $T: V \rightarrow V$ by

$$(T f)(x) = \int_{0}^{x} f(t) dt, \forall f \in V, x \in R.$$

Show that T has no eigen value.

(b) Prove that if V be a finite dimensional vector space over F and $v(\neq 0) \in V$, then $\exists f \in \hat{V}$ such that $f(v) \neq 0$.

5

4

- 7. (p) If W_1 and W_2 are subspaces of a finite dimensional vector space V, show that $A(W_1 + W_2) = A(W_1) \cap A(W_2)$.
 - (q) If K_{λ} is eigenspace, then prove that K_{λ} is a subspace of vector space V.
 - (r) Define characteristic root and characteristic vector.

UNIT-IV

8. (a) In $F^{(n)}$ define for $u = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n)$ and $v = (\beta_1, \beta_2, \dots, \beta_n)$

$$(u,\,v)\,{=}\,\alpha_1\overline{\beta}_1\,{+}\,\alpha_2\overline{\beta}_2\,{+}\,......\,{+}\,\alpha_n\overline{\beta}_n\,.$$

Show that this defines an inner product.

(b) If $\{x_1, x_2, x_3, \dots, x_n\}$ be an orthogonal set, then prove that :

$$\| \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n \|^2 = \| \mathbf{x}_1 \|^2 + \| \mathbf{x}_2 \|^2 + \dots + \| \mathbf{x}_n \|^2$$

- (c) Prove that orthogonal complement i.e. W¹ is subspace of V. 2
- 9. (p) If $\{w_1, w_2, \dots, w_m\}$ is an orthonormal set in V, then $\sum_{i=1}^m |(w_i, v)|^2 \le ||v||^2$ for any $v \in V$.

YBC—15328 3 (Contd.)

- (a) If V is a finite dimensional inner product space and W is a subspace of V then prove that $(W^{\perp})^{\perp} = W$. 4 (r) (i) Define inner product in vector space. 1 (ii) Define orthogonal set. 1 UNIT-V 10. (a) Let A be a submodule of an R-module M and T is a mapping from M into M/A defined by $T_m = A + m$, $\forall m \in M$. Then prove that T is an R-homomorphism of M into M/A and ker T = A. 5 (b) Let T be a homomorphism of an R-module M to an R-module H. Prove that T is oneone iff ker $T = \{0\}$. 3 (c) Define: (i) Submodule
- (ii) Unital R-module. 2

 11. (p) If A and B are submodules of M, then prove that $\frac{A+B}{B}$ is isomorphic to
 - (q) Prove that arbitrary intersection of submodules of a module is a submodule. 4

6

B.Sc. Part-III (Semester-VI) Examination

MATHEMATICS

(Special Theory of Relativity)

		Paper—X		
Time:	Three	Hours]		[Maximum Marks: 60
Note :-	-(1)	Question No. 1 is compulsory, attem	pt o	nce.
	(2)	Attempt ONE question from each un	nit.	
1. Ch	oose	the correct alternative :		
(i)	The	e interval $ds^2 = -(dx')^2 - (dx^2)^2 - (dx^3)^2$)2 + ($(dx^4)^2$ is said to be space like if: 1
	(a)	$ds^2 > 0$	(b)	$ds^2 < 0$
	(c)	$ds^2 = 0$	(d)	None of these
(ii)	The	e electric and magnetic field strengths	E ar	nd H are invariant under:
	(a)	Galilean Transformations	(b)	Laplace Transformations
	(c)	Fourier Transformations	(d)	Guage Transformations
(iii) A ⁱ	$=(\overline{A}, \phi) = (Ax, Ay, Az, \phi)$ is a four pote	ential	then:
	(a)	$A_i = (\overline{A}, \phi)$	(b)	$A_i = (\overline{A}, -\phi)$
	(c)	$A_i = (-\overline{A}, \phi)$	(d)	$A_i = (-\overline{A}, -\phi)$
(iv) A ^r =	= (A ¹ , A ² , A ³ , A ⁴) is a four vector or fo	our d	imensional vector where $A^2 < 0$ then A
	(a)	Time like	(b)	Null or light like
	(c)	Space like	(d)	None of these
(v)	Cov	variant tensor of rank one T', is define	d as	: 1
	(a)	$T'_{r} = \frac{\partial x'^{r}}{\partial x^{5}} T_{s}$	(b)	$T_{r}' = \frac{\partial x'^{r}}{\partial x^{5}} T_{r}$
	(c)	$T'_{r} = \frac{\partial x^{5}}{\partial x'^{r}} T_{s}$	(d)	$T'_{r} = \frac{\partial x^{5}}{\partial x'^{r}} T_{r}$
(vi) The	special Lorentz transformations will	redi	uce to simple Galilean transformations
	whe	en:		1
	(2)	V = C	(h)	C < < V

(d) None of these

(c) V << C

		(a) $F_{ij} = \frac{\partial A_i}{\partial x^j} - \frac{\partial A_j}{\partial x^i}$	(b)	$F_{ij} = \frac{\partial A_j}{\partial x^i} - \frac{\partial A_i}{\partial x^j}$	
		(c) $F_{ij} = \frac{\partial A_i}{\partial x^j} + \frac{\partial A_j}{\partial x^i}$	(d)	None of these	
	(viii)	The transformations $\bar{\mathbf{r}}' = \bar{\mathbf{r}} - \bar{\mathbf{v}}t$ and $t' = t$	are :		1
		(a) Laplace transformations	(b)	Lorentz transformations	
		(c) Galilean transformations	(d)	None of these	
	(ix)	If \overline{A} is a vector potential then the magn	etic 1	field is :	1
		(a) $\overline{H} = \operatorname{div} . \overline{A}$	(b)	$\overline{H} = \text{Curl } \overline{A}$	
		(c) $\overline{H} = \operatorname{div} \cdot (\operatorname{Curl} \overline{A})$	(d)	None of these	
	(x)	Four velocity of a particle is :			1
		(a) a unit space-like vector	(b)	a unit time-like vector	
		(c) a unit light-like vector	(d)	None of these	
		UNIT-	-I		
2.	(a)	Obtain Galilean transformation equat motion.	ions	for two inertial frames in	relative 3
	(b)	Show that simultaneity is relative in spec	cial r	elativity.	3
	(c)	Show that the electromagnetic wave equa	ation	:	
		$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0$			
		is not invariant under the Galilean transf	forma	tions.	4
3.	(p)	Discuss the geometrical interpretation of	Lore	entz transformat ons.	4
	(q)	Prove that $\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is invariant under	er spe	ecial Lorentz transformations.	4
	(r)	Show that $x^2 + y^2 + z^2 - c^2t^2$ is Lorentz	invai	iant.	2
		UNIT-	-II		
4.	(a)	Obtain the transformations for the vertransformations.	locity	of a particle under special	Lorentz 5

2

(Contd.)

YBC-15330

(vii) The electromagnetic field tensor (or Maxwell tensor) F_{ij} is defined as:

(b) If \overline{u} and \overline{u}' be the velocities of a particle in two inertial systems s and s' respectively where s' is moving with velocity v relative to s along the XX' axis then show that :

$$\tan \theta' = \frac{\sin \theta \left(1 - \frac{v^2}{c^2}\right)^{1/2}}{\cos \theta - \frac{v}{u}}$$

and

$$u^{'2} = \frac{u^{2} \left[1 - 2\frac{v}{u}\cos\theta + \frac{v^{2}}{u^{2}} - \frac{v^{2}}{c^{2}}\sin^{2}\theta \right]}{\left(1 - \frac{uv}{c^{2}}\cos\theta \right)^{2}}$$

where θ and θ' are the angles made by u and u' with the X-axis respectively.

5. (p) If \overline{u} and \overline{u} ' be the velocities of a particle in two inertial systems s and s' respectively then prove that:

$$\sqrt{1 - \frac{u^2}{c^2}} = \frac{\sqrt{1 - \frac{{u'}^2}{c^2}} \sqrt{1 - \frac{v^2}{c^2}}}{\left(\frac{1 + u'_x \ v}{c}\right)},$$

where s' is moving with velocity v relative to s along XX' axis.

(q) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system.

5

UNIT—III

- (a) Define time-like, space-like and light-like intervals for the space time geometry of special relativity.
 - (b) Define a four tensor of the second order. Prove that :

(i)
$$T^{11} = \alpha^2 \left\{ T^{11} - \frac{v}{c} T^{14} - \frac{v}{c} T^{41} + \frac{v^2}{c^2} T^{44} \right\}$$
 and

(ii)
$$T^{14} = \alpha^2 \left\{ -\frac{v}{c} T^{11} + T^{14} + \frac{v^2}{c^2} T^{41} - \frac{v}{c} T^{44} \right\}$$
 1+3+3

7. (p) Define a four vector Ar. Show that :

$$A^{1} = -A_{1}, A^{2} = -A_{2}, A^{3} = -A_{3}, A^{4} = A_{4}.$$
 1+3

- (q) Prove that there exists an inertial system s' in which the two events occur at one and the same time if the interval between two events is space-like.
- (r) Write the Lorentz transformations in index form.

UNIT-IV

- 8. (a) Deduce Einstein's mass energy equivalence relation.
 - (b) Define: Four velocity. Prove that the four velocity in component form can be expressed as:

$$u^{i} = \left(\frac{\overline{u}}{c\sqrt{1 - u^{2}/c^{2}}}, \frac{1}{\sqrt{1 - u^{2}/c^{2}}}\right)$$

where $\overline{u} = (u_x, u_y, u_z) = \text{velocity of the particle.}$

1+4

2

- 9. (p) Define: Four momentum vector p^i . Prove that the square of the magnitude of the four momentum vector p^i is $m^2 \circ c^2$.
 - (q) A particle is given a kinetic energy equal to n times its rest energy $m \circ c^2$. Find speed and momentum of the particle.

 (Kinetic energy = $T = m \circ c^2 \left\{ \frac{1}{\sqrt{1 v^2/c^2}} 1 \right\}$

UNIT-V

10. (a) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m^2 c^4 + c^2 \left(p - \frac{e}{c} A \right)^2 \right\}^{1/2} + e\phi.$$
 5

- (b) Define : Current four vector. Show that $e^2p^2-J^2$ is invariant and its value is $\rho^2\circ c^2$.
- 11. (p) Prove that the set of Maxwell's equations div. $\overline{H} = 0$ and $\overline{E} = -\frac{1}{c} \frac{\partial \overline{H}}{\partial t}$ can be written

as
$$\frac{\partial F_{ij}}{\partial x^k} + \frac{\partial F_{jk}}{\partial x^i} + \frac{\partial F_{ki}}{\partial x^j} = 0$$
, where F_{ij} is the electro-magnetic field tensor.

(q) Define electromagnetic field tensor F_{ij} . Express the components of F_{ij} in terms of the electric and magnetic field strengths.

B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS

Linear Algebra

Paper—XI

Time: Three	Hours]	12 8	[Maximum Marks : 60
	Question No. 1 is compulsory and a Attempt ONE question from each u	107	pt this question once only.
(1) Any (a) (b) (c)	the correct alternative : superset of a linearly dependent set Linearly independent Linearly dependent Linearly independent None of these		lent
(a)		(b)	the V(F) then $U \cup W$ is a subspace iff: 1 $U \supseteq W$ or $W \supseteq U$ None of these
(a)	$: U \to V$ be a linear map then $R(T)$ U $U \cap V$	(b)	
map (a) (c)	then:	(b) (d)	d T: U \rightarrow V be a linear one-one and onto 1 $U = V$ $U \neq V$ 1
	Linear element Linear functional	(b) (d)	Bilinear element None of these (Contd.)

(6)	(a) Linearly independent (b) Linearly dependent (c) Linearly independent as well as linearly dependent				
	(d) None of these				
(7)	In an inner product space V, the inequality as:	$\mid (u, v) \mid \leq \parallel u \parallel \cdot \parallel v \parallel$, for all $u, v \in V$ is	known		
	100 100 100 100 100 100 100 100 100 100	(b) Cauchy-Schwartz inequality(d) None of these			
(8)	If W is a subspace of an inner product spathen:	ace V and W [±] is orthogonal complement	of W,		
	A. C.	 (b) W ∩ W[⊥] = {0} (d) None of these 			
(9)	If A is any submodule of a R-module M M/A is:		t group		
	(a) M	(b) A (d) None of these			
(10) Let T: M \rightarrow H be a homomorphism of a		1		
		(b) R(T) is a submodule of M			
	(c) R(T) is a submodule of H	(d) None of these			
	UNIT-	-I			
2. (a)	Define Linear span. If S be a non-empty su the smallest subspace of V containing S.	ubset of a vector space V, then prove that	at [S] is 1+3		
(b)	Prove that an arbitrary intersection of sub-	spaces of a vector space is again a subs	space.		
(c)	Prove that the set of functions $\{x, x \}$ if functions defined on $(-1, 1)$.	is L.I. in a real vector space of the con	tinuous 3		
3. (p)	If U and W are finite dimensional subspace $\dim(U + W) = \dim U + \dim W - \dim W$		t :		
(q)	Given two LI vectors $(1, 0, 1, 0)$, $(0, -1, 1, 1)$ two vectors.				
UNW—2	4774 2		(Contd.)		

UNIT-II

- 4. (a) If T is a linear transformation of V_2 to V_2 defined by T(2, 1) = (3, 4), T(-3, 4) = (0, 5), then express (0, 1) as a LC of (2, 1) and (-3, 4). Hence find image of (0, 1) under T. 3
 - (b) Let $T: U \to V$ be a linear map. Then prove that N(T) is a subspace of U.
 - (c) Let $T: V_4 \to V_3$ be a linear map defined by : $T(e_1) = (1, 1, 1), \ T(e_2) = (1, -1, 1), \ T(e_3) = (1, 0, 0), \ T(e_4) = (1, 0, 1).$ Verify Rank-Nullity theorem.
- (p) If T: U → V be a non-singular linear map, then prove that T⁻¹: V → U is also a non-singular linear map.
 - (q) If the matrix of a linear map T with respect to bases B_1 and B_2 is $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ where $B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$ and $B_2 = \{(1, 0), (2, -1)\}$. Find T(x, y, z).
 - (r) Find the range, kernel, rank and nullity of a matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and verify Rank-

3

Nullity theorem.

UNIT-III

- 6. (a) Let V be the finite dimensional vector space over F. Then prove that $V \approx \hat{\hat{V}}$.
 - (b) If V is finite dimensional and $V_1 \neq V_2$ are in V, prove that there is an $f \in \hat{V}$ such that $f(V_1) \neq f(V_2)$.
 - (c) Prove that A(W) is a subspace of \hat{V} .
- 7. (p) Define Annihilator W. If V be a vector space over F for a subset S of V and $A(S) = \{f \in \hat{V} / f(s) = 0, \forall s \in S\}$, then prove that A(S) = A(L(S)), where L(S) is linear span of S.
 - (q) If U, V are finite dimensional complex vector spaces and $A: U \to V$, $B: U \to V$ are linear maps with $\alpha \in C$, then prove that $(A + B)^* = A^* + B^*$.
 - (r) If W_1 and W_2 are subspaces of a finite dimensional vector space V over F then describe $A(W_1 \cap W_2)$ in terms of $A(W_1)$ and $A(W_2)$.

UNW—24774 3 (Contd.)

UNIT-IV

8. (a) In an IPS V over F, prove the parallelogram law:

$$|| u + v ||^2 + || u - v ||^2 = 2(|| u ||^2 + || v ||^2).$$
 5

(b) Apply Gram-Schmidt method to orthonormalise the set :

$$\{(1, 0, 1, 1), (-1, 0, -1, 1), (0, -1, 1, 1).$$

- (p) Let W[⊥] be the set of orthogonal vectors in an IPS V, then prove that W[⊥] is a subspace of V.
 - (q) Let V be a finite dimensional inner product space. Then prove that V has an orthogonal set as a basis.
 - (r) In $F^{(n)}$ define, for $u=(\alpha_1,\ \alpha_2,\,\ \alpha_n)$ and $v=(\beta_1,\ \beta_2,\,\ \beta_n),$

$$(u,\ v) \,=\, \alpha_1 \overline{\beta}_1 + \alpha_2 \overline{\beta}_2 + \ldots + \alpha_n \overline{\beta}_n \,.$$

Show that this defines an inner product.

UNIT-V

- (a) Let T be a homomorphic of R-module M into an R-module H. Then prove that T is one-one iff Ker T = {0}.
 - (b) If M_1 and M_2 are submodules of R-module M_1 , then prove that $M_1 + M_2$ is a submodule of M. Moreover $M_1 + M_2$ is direct sum of M_1 and $M_2 \Leftrightarrow M_1 \cap M_2 = \{0\}$.
 - (c) If T is a homomorphism of an R-module M to an R-module H, then show that :
 - (i) T(o) = o
 - (ii) $T(-m) = -Tm, \forall m \in M$
 - (iii) $T(m_1 m_2) = Tm_1 Tm_2, \forall m_1, m_2 \in M.$
- 11. (p) If A and B are submodules of M, then prove that $\frac{A+B}{B}$ is isomorphic to $\frac{A}{A \cap B}$.
 - (q) Define submodule of a module. Prove that arbitrary intersection of submodules of a module is a submodule.
 5

3

3

B.Sc. (Part—III) Semester—VI Examination MATHEMATICS

(Linear Algebra)

Paper-XI

lin	ne : T	hree Hou	rs]	(d)	[Maximu	m Marks: 60
	Not	te:—(1)			mpt this question once only	es el tara
1.	Cho		orrect alternative :	T. (d)	until book strando	6 4611
	(i)	If S is n	on empty subset of v	ector sapce V, the	n L(S) is	1
			gest subspace of V co		M 新 1. 1650 新 1650 李 1650 在 1650 3 A	
		(b) Sm	allest subspace of V c	ontaining S.		
		(c) Sm	allest subspace of V c	ontaining V.	on the contract of the contrac	
			ne of these.		And the same of the same	
	(ii)	The bas		, 0), (0, 0, 1)}	of the vector space R3(I	R) is known
		(a) No	rmal basis	(b)	Standard basis	
		(c) Qu	otient basis	(d)	Hamel basis	
	(iii)		be finite dimensional	vector spaces and	$T: U \rightarrow V$ be a linear, one-	one and onto
		(a) din	u U = dim V	(b)	U = V	n bath in the
		(c) din	n U ≠ dim V	(d)	$U \neq V$	Song Sque
	(iv)	The kern	nel of a linear transfo	rmation $T: U \rightarrow$	V is a subset of	.1 40 101
		(a) U		(b)	Vinneral services T	
		(c) U a	and V	(d)	None of these	
	(v)	An elem	nent of dual space of	V is called a	Har to and comics on an	1
		(a) Lin	ear element	(b)	Bilinear element	
		(c) Lin	ear functional	(d)	None of these	
VIN	M 141	99		1		(Contd.)

(vi)	Eigen vectors corresponding to distinct eigen values of a square matrix are					
	(a) Linearly independent					
	(b) Linearly dependent					
	(c) Linearly independent as well as Lin	nearly de	pendent			
	(d) None of these.					
(vii)	If $ V = 1$, then V is called	Fames	1			
	(a) Normalised	(b)	Orthonormal.			
	(c) Scalar inner product	(d)	Standard inner product.			
(viii)	In an inner product space V(F), following	ng relatio	on:			
	$ u + v ^2 + u - v ^2 = 2 (u ^2 + $	v 2) is	called			
	(a) Schwrtz's inequality	(b)	Triangular law			
	(c) Parallelogram Law	(d)	Bessel's inequality			
(ix)	If ring R has a unit element 1 and 1.	a = a, for	r all $a \in M$, then M is called 1			
	(a) Unital R-module	(b)	Left R-module			
	(c) Unique R-module	(d)	None of these			
(x)	If M is any R-module, then M and {0} as submodules of M:	re always	submodules of M these are called			
	(a) Proper	(b)	Improper			
	(c) Subproper	(d)	Irreducible.			
	uni ett sesse uni	T—I				
(a)	Let R ⁺ be the set of all positive real numbers calar multiplication ⊗ as follows:	ber. Defir	ne the operations of vector addition \oplus and			
	$u \oplus v = uv, \forall u, v \in R^+$					
	and $\alpha \otimes u = u^{\alpha}, \forall u \in R^{+} \alpha \in R$.		The British Andrews Company			
	Prove that R ⁺ is a real vector space.		5			
(b)	Let U and W be two subspaces of a v	ector spa	ace V and $Z = U + W$. Then prove that			
	$Z = U \oplus W \Leftrightarrow z = u + w$ is unique repres	entation	for any zεZ and for some uεU, ωεW.			
	MISSELLE ENVIRONMENT		7 Nes 11 19. 5			
(p)	Prove that the intersection of two subsp statement true for union?	paces of a	a vector space is again a subspace. Is this			

2.

3.

(q)	Show that the ordered set $S = \{(1, 1, 0), (0, 1, 1), (1, 0, -1), (1, 1, 1)\}$ is LD and locate one of the vectors from S that belongs to the span of the previous ones. Find also the largest LI subset of S whose span is [S].
	in hearth and a serious emorganic UNIT—II
(a)	Find a linear transformation T from V ₂ to V ₂ s.t.
	T(1, 0) = (1, 1) and $T(0, 1) = (-1, 2)$. Prove that T maps the square with vertices $(0, 0), (1, 0), (1, 1)$ and $(0, 1)$ into a parallelogram.
(b)	Let $T: U \to V$ be a linear map. Then prove that $R(T)$ is a subspace of V .
(c)	Find the range, kernel, rank and nullity of the matrix:
	$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & -2 & 5 \end{bmatrix}$ and the same and the same are already disconnected at the (0)
	and verify Rauk-Nullity theorem.
(p)	Find the matrix of the linear map $T: V_2 \rightarrow V_3$ defined by $T(x, y) = (-x + 2y, y, -3x + 3y)$
	related to the bases
	$B_1 = \{(1, 2), (-2, 1)\}$
	and $B_2 = \{(-1, 0, 2), (1, 2, 3), (1, -1, 1)\}.$
(q)	State and prove Rank-Nullity theorem.
	UNIT—III See a fact a filter of Mar. 1 (d)
(a)	Let V be a finite dimensional vector space over F, then prove that $\mathbf{V} \approx \hat{\mathbf{V}}$.
(b)	If W, and W, are subspaces of a finite dimensional vector space V over F, then show
	that william of the AMS that a very growth the subbarn Whatman's stable advantage advAM. (b)
	$A(W_1 \cap W_2) = A(W_1) + A(W_2)$.
(c)	Prove that annihitator of $W = A(W)$ is a subspace of \hat{V} .
(p)	Let U, V be finite dimensional complex vector spaces and $A:U\to V,B:U\to V$ be linear maps of α ϵ C, then prove that :
	(i) $(A + B)^* = A^* + B^*$,
	(ii) $(\alpha A)^* = \overline{\alpha} A^*$.

4.

5.

6.

7.

	(q)	If W is a subspace of a finite dimensional vector space V, then prove that	
		A(A(W)) = W.	5
		UNIT—IV	
8.	(a)	Let V be a set of all continuous complex valued functions on the closed interval $[0, 1]$ If $f(t)$, $g(t)$ ϵV , defined by	ļ.
		$(f(t),g(t)) = \int_0^1 f(t) \cdot \overline{g}(t) dt$, then.	
		show that this defines an inner product on V.	5
	(b)	Using Gram-Schmidt Orthogenalisation process orthonormalise the L.I. sub $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ of V_3 .	se 5
9.	(p)	If $\{x_1, x_2,, x_n\}$ be an orthogonal set, then prove that:	
		$ x_1 + x_2 + + x_n ^2 = x_1 ^2 + x_2 ^2 + + x_n ^2.$	3
	(q)	Prove that in an inner product space V,	
		(i) $\ \alpha u \ = \alpha \ u \ $,	
		(ii) $\ u + v \ \le \ u \ + \ v \ $.	4
	(r)	If V is a finite dimensional inner product space and W is a subspace of V then show t $(W^{\perp})^{\perp} = W$.	hat 3
		UNIT—V	
10.	(a)	Prove that arbitrary intersection of submodules of a module is a submodule.	3
	(b)	Let M be an R-module. Then prove the following:	
		(i) $\gamma \cdot 0 = 0$, $\forall \gamma \epsilon R$.	
		(ii) $-(\gamma \cdot a) = \gamma \cdot (-a) = (-\gamma) \cdot a$, $\forall \gamma \in \mathbb{R}$ and meM.	4
	(c)	If A be a submodule of unital R-module M, then prove that M/A is also unital R-module	le.
11.	(p)	Define R-module homomorphism. If $T: M \to H$ be an R-module homomorphism, the prove that :	ien
		(i) K(T) is a submodule of M and R(T) is submodule of H.	
		(ii) T is one-one \Leftrightarrow K(T) = {0}.	14
	(q)	Let M be an R-module. If H and K are submodules of M with $K \subset H$. Then prove the	nat
		$\frac{M}{H} \approx \frac{M/K}{H/K}$.	5
VIN	1-141		925
		#####################################	desir!

(Contd.)

B.Sc. (Part-III) Semester-VI Examination MATHEMATICS (NEW)

(Linear Algebra)

Paper—XI

WPZ-3379

Time	e : T	hree	Hours]		[Maximum Marks: 60
Note	:		Question No. 1 is compulsory. Attended Attempt ONE question from each under the computation of the computati		once only.
1.	Cho	ose t	he correct alternative :		10
	(i)	A n	on empty subset U of a vector space	V(F)	is a subspace of V iff:
		(a)	$\alpha\beta + uv \in U$	(b)	$\alpha u + \beta v \in V$
# B		(c)	$\alpha u + \beta v \in U$	(d)	$\alpha u - \beta v \in V$ for all $\alpha, \beta \in F$ and $u, v \in U$
	(ii)	Any	subset of linearly independent set is	:	
		(a)	linearly dependent		
		(b)	linearly dependent and linearly indep	pende	ent
		(c)	linearly independent		
		(d)	None of these		
	(iii)	If T	: $u \rightarrow v$ is linear map then R(T) is	subse	et of :
		(a)	V	(b)	$U \cap V$
		(c)	U	(d)	$U \cup V$
	(iv)	An	element of dual space V is called a :		le il
		(a)	Linear element	(b)	Linear functional
		(c)	Bilinear element	(d)	None of these
	(v)	If u,	v be finite dimensional vector spaces	and	$T: u \rightarrow v$ be a linear one-one and onto
		map	, then:		
		(a)	dim U = dim V	(b)	dim U ≠ dim V
		(c)	U = V	(d)	U ≠ V
	(vi)	If V	is the finite dimensional vector space	e ov	er F then:
		(a)	$\mathbf{V} \cong \hat{\mathbf{V}}$	(b)	$V \neq \hat{V}$
		(c)	$\hat{\mathbf{V}} = \{0\}$	(d)	None of these
	(vii)	If	$V \parallel = 1$ then V is called:		
		(a)	Orthogonal	(b)	Null vector
		(c)	Normalised	(d)	None of these

(viii) The normalised vector of (1, -2, 5) is:

(a)
$$\left(\frac{1}{\sqrt{30}}, \frac{-2}{\sqrt{30}}, \frac{5}{\sqrt{30}}\right)$$

(b)
$$\left(\frac{1}{2}, -1, \frac{5}{2}\right)$$

$$(c) \quad \left(\frac{1}{5}, \frac{-2}{5}, -1\right)$$

(ix) R-Module homomorphism is linear transformation if:

(a) R-with unit element

(b) R is commutative

(c) R-is a field

(d) None of these

(x) If the ring R has a unit element 1 and 1.a = a for all $a \in M$ then M is called :

(a) A unital R-module

(b) Right R-module

(c) Left-R-module

(d) None of these

UNIT-I

- 2. (a) Define a basis of a vector space. If $\{v_1, v_2,, v_n\}$ is a basis of V over F and if $w_1, w_2,, w_m \in V$ are L.I. over F, then prove that $m \le n$.
 - (b) Define a subspace of a vector space and prove that the non empty subset U of a vector space V(F) is a subspace of V iff $\alpha u + \beta v \in U + \alpha$, $\beta \in F$, $u, v \in U$.
- 3. (p) Prove that the intersection of two subspaces of a vector space is again a subspace. Is the statement true for union? Justify.
 - (q) Find span of $S = \{(1, 2, 1), (1, 1, -1), (4, 5, -2)\}$ and then prove that (2, -1, -8) belongs to the span of S^1 but (1, -3, 5) does not belongs to span of S^2 .

UNIT-II

4. (a) Let U, V are the vector spaces over a field F and T: u → v be a linear map. Then prove that:

- (i) T(0) = 0
- (ii) $T(-u) = -T(u) \neq u \in U$
- $\begin{aligned} (iii) \ T(\alpha_{_1}u_{_1}+\alpha_{_2}u_{_2}+......+\alpha_{_n}u_{_n}) &= \alpha_{_1}T(u_{_1})+\alpha_{_2}T(u_{_2})+.....+\alpha_{_n}T(u_{_n}) \\ & \qquad \qquad \forall \ u_{_i} \in U, \ \alpha_{_i} \in F, \ 1 \leq i \leq n \ \text{and} \ n \in N. \end{aligned}$

(b) Let $T: V_4 \to V_3$ be a linear map defined by $T(e_1) = (1, 1, 1)$, $T(e_2) = (1, -1, 1)$, $T(e_3) = (1, 0, 0)$, $T(e_4) = (1, 0, 1)$. Verify Rank-Nullity theorem.

- 5. (p) State and prove Rank-Nullity Theorem.
 - (q) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be a matrix of linear map T with respect to bases B_1 and B_2

where $B_1 = \{(1, 1, 1), (1, 0, 0), (0, 1, 0)\}, B_2 = \{(1, 2, 3), (1, -1, 1), (2, 1, 1)\}.$ Find $T: V_3 \rightarrow V_3$ such that $A = (T: B_1, B_2).$

WPZ-3379

5

UNIT—III

- (a) Let V be a finite dimensional vector space over F. Then prove that $V \approx \hat{V}$.
 - (b) Define Annihilator of W. Prove that annihilator of W = A(W) is a subspace of \hat{V} . 5

5

- (p) If U and V are finite dimensional complex vector spaces and A: U \rightarrow V, B: U \rightarrow V 7. are linear maps, then prove that (i) $(A + B)^* = A^* + B^*$, (ii) $(\alpha A)^* = \overline{\alpha} A^*$.
 - (q) If S is a subset of a vector space V and A(S) = $\{f \in \hat{V}/f(x) = 0 \forall s \in S\}$ then prove that A(S) = A(L(S)) where L(S) is the linear span of S.

UNIT-IV

- 8. (a) State and prove Cauchy-Schwarz inequality.
 - (b) (i) If $\{x_1, x_2, \dots, x_n\}$ is an orthogonal set, then prove that : $\| \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n \|^2 = \| \mathbf{x}_1 \|^2 + \| \mathbf{x}_2 \|^2 + \dots + \| \mathbf{x}_n \|^2$
 - (ii) Prove that every orthogonal set is LI. 5
- (p) Let V be a finite dimensional inner product space. Then prove that V has an orthogonal 9. (orthonormal) set as a basis. 5
 - (q) Using Gram-Schmidt process, orthonormalise the set of vectors:

$$\{(1, 0, 1, 0), (1, 1, 3, 0), (0, 2, 0, 1)\}$$
 of V_4 .

UNIT-V

- 10. (a) If M_1 and M_2 are submodules of R-module M, then prove that $M_1 + M_2$ is a sub module of M. Moreover prove that $M_1 + M_2$ is a direct sum of M_1 and M_2 iff $M_1 \cap M_2 = \{0\}$.
 - (b) Define:
 - (i) R-module homomorphism
 - (ii) Quotient module

and prove that if A be a submodule of unital R module M, then prove that M/A is also unital R-module. 1+1+3

- 11. (p) If H and K are submodules of M then prove that $\frac{H+K}{K} \cong \frac{H}{H \cap K}$. 5
 - (q) If T is a homomorphism of a R-module M to R-module H then prove that:
 - (i) T(0) = 0
 - (ii) $T(-m) = -T(m) \forall m \in M$
 - (iii) $T(m_1 m_2) = T(m_1) T(m_2) + m_1 m_2 \in M$. 3
 - (r) If M be an R-module and $m \in M$. Then prove that $A = \{rm/r \in R\}$ is a submodule of M.

B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS (New)

(Linear Algebra)

Paper—XI

Time: Three		hree	Hours]			[Maximum Marks: 60		
Note :—(1)		(1)	Question No. 1 is compulsory and attempt it once only.					
		(2)	Attempt ONE question from e	ach un	it.			
1.	Cho	ose t	he correct alternatives :			10		
	(i)	The	basis {(1, 0, 0), (0, 1, 0), (0, 0	0, 1)} (of th	e vector space R3(R) is known as:		
		(a)	Normal basis		(b)	Quotient basis		
		(c)	Standard basis		(d)	None of these		
	(ii)	The	vectors (a, b) and (c, a) are L.	D iff:				
		(a)	ad - bc = 0		(b)	ab - cd = 0		
		(c)	cd - ab = 0		(d)	ab + dc = 0		
	(iii)	The	kernel of a linear transformation	on T:	U -	V is a subset of:		
		(a)	U		(b)	V		
		(c)	U and V		(d)	None of these		
	(iv)	If W	is a subspace of a finite dime	nsional	vec	ctor space V, then dim (V/W) =		
		(a)	dim V dim W		(b)	$dim\ V-dim\ W$		
		(c)	dim V + dim W		(d)	None of these		
	(v)	An element of dual space of V is called a:						
		(a)	Linear functional		(b)	Bilinear element		
		(c)	Linear element		(d)	None of these		
	(vi)	Ann	ihilator of W, A(W) is a subspa	ace of	:			
		(a)	W		(b)	\mathbf{v}		
		(c)	Ŷ		(d)	None of these		
VOX	 358	323		1		(Contd.)		

	(vii) Eve	ery set of orthogonal vectors is:					
		(a)	Linearly Independent					
		(b)	Linearly Dependent					
		(c)	Linearly Independent and Linearly	Dep	endent			
		(d)	None of these					
	(viii) Let	W be a subspace of an IPSV then W	$V \cap V$	$V^{\perp} =$			
		(a)	{0}	(b)	{1}			
		(c)	ф	(d)	None of these			
	(ix)	R-N	Module homomorphism is linear transf	orma	ation if:			
		(a)	R is with unit element	(b)	R is commutative			
		(c)	R is a field	(d)	None of these			
	(x)	If th	he ring R has a unit element 1 and 1.	a = :	a for all $a \in M$, then M is called :			
		(a)	A unital R-module	(b)	Right R-module			
		(c)	Left R-module	(d)	None of these			
			UNIT—	I				
2.	(a)	Pro	ve that intersection of two subspaces of	of a v	vector space is again a subspace. Is this			
		stat	ement is true for union ?		5			
	(b)	Let	U and W are two subspaces of a ve	ctor	space V and $Z = U + W$: Then show			
		that $Z = U \oplus W \Leftrightarrow z = u + w$ uniquely for any $z \in Z$ and for some $u \in U$ and						
		W 6	≣ W.		5			
3.	(p)	Def	ine the Linear span of a subset of a v	ector	space and show that Linear span L(S			
		of a	a subset S of a vector space V is the	smal	lest subspace of V containing S. 5			
	(q)	If L	J and W are finite dimensional subspa	aces	of a vector space V, then prove that:			
			$\dim(U + W) = \dim U + \dim W - \dim$	m (T	$J \cap W$).			
VO	X-35	823	2		(Contd.			

UNIT-II

4. (a) Let $T: U \to V$ be a linear transformation. Then prove that :

T is one-one \Leftrightarrow N(T) is zero subspace of U.

5

(b) Let $T: V_3 \rightarrow V_3$ defined by:

$$T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_3 - 2x_1)$$

Find range, kernel, rank, nullity and verify rank-nullity theorem.

5

- (p) State and prove Rank-Nullity theorem.
 - (q) Find the transformation T(x, y, z). If T is a linear map and matrix of T with respect to

the bases B_1 and B_2 is $\begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$, where

$$B_1 = \{(1, 2, 0), (0, -1, 0), (1, -1, 1)\}$$
 and

$$B_2 = \{(1, 0), (2, -1)\}.$$

5

UNIT-III

- (a) Let U, V are finite dimensional complex vector spaces and A: U → V, B: U → V be linear maps, α ∈ C, then prove that:
 - (i) $(A + B)^* = A^* + B^*$

(ii)
$$(\alpha A)^* = \overline{\alpha} A^*$$

3+2

- (b) Prove that the element $\lambda \in f$ is a characteristic root of $T \in L(V)$ iff for some non zero $v \in V$, $Tv = \lambda v$. Also define characteristic root and characteristic vector. 3+1+1
- 7. (p) If V is a finite dimensional vector space over F, then prove that $V \approx \hat{V}$.
 - (q) If W is a subspace of finite dimensional vector space V, then prove that A(A(W)) = W.

UNIT-IV

- 8. (a) Define inner product space and prove that in an inner product space V:
 - (i) $\|\alpha \cdot \mathbf{u}\| = |\alpha| \cdot \|\mathbf{u}\|$
 - (ii) $\| u + v \| \le \| u \| + \| v \|$, $\alpha \in F$ and $u, v \in V$.

1+4

(b) Using Gram-Schmidt process orthonormalise the set of vectors $\{(1, 0, 1, 0), (1, 1, 3, 0), (0, 2, 0, 1)\}$ of V_4 .

VOX—35823 3 (Contd.)

9. (p) Prove that if $\{W_1, W_2,, W_m\}$ is an orthonormal set in V, then $\sum_{i=1}^{m} |(w_i, v)|^2 \le ||v||^2$

for any $v \in V$.

(q) Prove that every finite dimensional inner product space has an orthogonal basis.

UNIT--V

- 10. (a) Define Homomorphism of Modules and prove that if T is a homomorphism of an R-module M to an R-Module H, then:
 - (i) T(0) = 0
 - (ii) $T(-m) = -T(m) \forall m \in M$
 - (iii) $T(m_1 m_2) = T(m_1) T(m_2) + m_1 m_2 \in M.$ 1+4
 - (b) Prove that every abelian group G is a module over a ring of integers Z. 5
- 11. (p) Define the sub module and prove that an arbitrary intersection of sub modules of a module is a submodule.
 - (q) Define direct sum of submodules and prove that if M_1 and M_2 are sub modules of R-module M, then $M_1 + M_2$ is a submodule of M.

B.Sc. (Part—III) Semester—VI Examination MATHEMATICS (New)

(Special Theory of Relativity)

Paper—XII

Tim	e : Tł	iree I	Hours]		[Maximum Marks : 6	50					
	Not	e :—	-(1) Question No. 1 is compulsory.								
			(2) Attempt ONE question from each	unit	•						
1.	Cho	ose t	he correct alternative :								
	(i)	The order of outer product is the of the order of the tensors.									
		(a)	Product	(b)	Difference						
		(c)	Sum	(d)	None of these	1					
	(ii)	The	interval ds is said to be time like if:								
		(a)	$ds^2 = 0$	(b)	$ds^2 < 0$						
		(c)	$ds^2 > 0$	(d)	None of these	1					
	(iii)	In N	In Newtonian Mechanics, an event is identified by real numbers.								
		(a)	1	(b)	2						
		(c)	3	(d)	4	1					
	(iv)	'Pri	nciple of Relativity' means:								
		(a)	Some inertial frame are equivalent	(b)	All inertial frame are not equivalent						
		(c)	All inertial frame are equivalent	(d)	None of these	1					
	(v)	Length contraction means:									
		(a)	Moving rod measures shorter	(b)	Moving rod measures larger						
		(c)	Rest rod measures shorter	(d)	Rest rod measures longer	1					
	(vi)	In re	elativistic addition law for velocities, wh	en c	$\rightarrow \infty$ then:						
		(a)	$\mathbf{u'} = \mathbf{u} + \mathbf{v}$	(b)	$\mathbf{u}' = \mathbf{u} - \mathbf{v}$						
		(c)	$\mathbf{u'} = \mathbf{v} - \mathbf{u}$	(d)	None of these	1					
	(vii)	Fou	r velocity of a particle is defined as:								
		(n)	$u^i = \frac{ds}{dx^i}$	(h)	$u^{i} = \frac{dx^{i}}{ds}$						
		(a)	dxi	(0)	ds						
		(c)	$u = \frac{dx}{ds^i}$	(d)	$u = \frac{dx^i}{dx^i}$	1					
		(0)	ds'	(4)	ds	•					
	(viii)	$\overline{\mathbf{F}} =$	mass X acceleration where mass =		is the longitudinal mass of the particle	•					
		w-x	\mathbf{m}_{o}		\mathbf{m}_{0}						
		(a)	$\frac{m_0}{(1-u^2/c^2)^{1/2}}$	(b)	$\frac{m_0}{(1-u^2/c^2)^{3/2}}$						
			m								
		(c)	$\frac{m_0}{(1-u^2/c^2)^{-3/2}}$	(d)	None of these	1					

(ix)	Mas	ss en	ergy eq	uivalen	ce relati	on is given b	y:		
	(a)	E =	mc ²				(b)	$E = m/c^2$	
	(c)	E =	c^2/m				(d)	None of these	1
(x)	If A	ā is a	vector	potenti	al then i	magnetic fiel	d is g	iven by :	
	(a)	H =	div Ā				(b)	$\overline{H} = \text{curl } \overline{A}$	
	(c)	H̄ =	= Δφ × .	Ą			(d)	None of these	1
						UNIT-	-I		
(a)	Obt	tain C	Salilear	transfo	ormation	equation for	two i	nertial frames in relative mo	otion.
(b)				circle x y relati	-	= a ² in s' is r	neasu	red to be an ellipse in s if	s' moves with 2
(c)	Sho	ow tha	t the Ne	ewton K	inematica	al equations of	motic	on are invariant under Galilean	transformation.
(a)	What are Lorentz transformations? Obtain an expression for them.								
(b)				n inertia int veloc		a body with	out in	fluence of any forces, move	es in a straight 4
						UNIT-	-II		
(a)	Sho	ow th	at the	velociti	es u and	l u' measured	l in tv	vo inertial systems s and s'	are related by
		$\sqrt{1}$	$-\frac{u^2}{c^2}$	$=\frac{\sqrt{1-\frac{1}{2}}}{\left(\frac{1}{2}\right)^{2}}$	$\frac{\mathbf{u'}^2}{\mathbf{c}^2} \cdot \sqrt{1}$ $1 + \frac{\mathbf{u'}_{\mathbf{x}}\mathbf{v}}{\mathbf{c}^2}$	$-\frac{v^2}{c^2}$			
	whe	ere s	is mo	ving wit	h veloc	ity 'v' relativ	e to s	along xx'axis.	5
(b)					o signal system.	can move w	ith a	velocity greater than the ve	locity of light 5
(a)		duce ocitie		sforma	tion of p	article veloci	ties ar	nd hence obtain relativistic ac	ddition law for 6
(b)	Wri	ite a	short n	ote on '	Time di	lation'.			4
						UNIT-	Ш		
(a)	Sho	ow th	at the	interval	or met	ric ds² betwe	en tw	o events is given by:	
		ds ²	= -dx	$x^2 - dy$	2 – dz^2	$+ c^2dt^2$			

2.

3.

4.

5.

6.

WPZ—3381 2 (Contd.)

(b) Prove that there exists an inertial system s' in which the two events occur at one and the

6

4

Prove that ds² is invariant under Lorentz transformation.

same point if the interval between two events is time like.

7. (a) Prove that:

(i)
$$T^{14} = \alpha^2 \left\{ -\frac{v}{c} T^{11} + T^{14} + \frac{v^2}{c^2} T^{41} - \frac{v}{c} T^{44} \right\}$$

(ii)
$$T'^{23} = T^{23}$$
.

- (b) Define:
 - (i) Contravariant tensor of order one
 - (ii) Covariant tensor of order one
 - (iii) Kronecker delta
 - (iv) Space like interval.

UNIT-IV

- 8. (a) Prove that $E = mc^2$, where E is the energy of the particle.
 - (b) Show that the four velocity, in component form can be expressed as:

$$\mathbf{u}' = \left(\frac{\overline{\mathbf{u}}}{c\sqrt{1 - \mathbf{u}^2/c^2}}, \frac{1}{\sqrt{1 - \mathbf{u}^2/c^2}}\right), \text{ where } \overline{\mathbf{u}} = (\mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z).$$

- 9. (a) Show that the quantity $p^2 E^2/c^2$ is an invariant whose numerical value is $-m_0^2 c^2$.
 - (b) Define four momentum vector. Obtain the transformation equations for four momentum and energy.

UNIT-V

- 10. (a) Define current four vector. Transform its components under Lorentz transformation. Deduce an expression $c^2 \rho^2 J^2 = \rho_0^2 c^2 = invariant$.
 - (b) Obtain the wave equation for the propagation of electric \(\overline{E}\) and magnetic \(\overline{H}\) field strengths in vacuum with velocity of light.
- 11. (a) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m_0^2 c^4 + c^2 \left(p + \frac{e}{e} A \right)^2 \right\}^{1/2} + e \phi.$$

(b) Define electromagnetic field tensor F_{ij} and obtain the components F₂₃, F₃₁, F₁₂, also show that F_{ij} is antisymmetric.

6

B.Sc. (Part—III) Semester—VI Examination MATHEMATICS

(Special Theory of Relativity)

Paper-XII

Tim	e : T	hree	Hours]		[Maximum Marks : 60				
	Not	e :	(1) Question No. 1 is compulsory.		$\tilde{\gamma}_{j}^{*} = \tilde{3}$ (a)				
			(2) Attempt one questions from ea	ach u	ting welcome of a marriele is deli-				
1.	Cho	ose 1	the correct alternative :		. 1				
	(i)	(i) The reference system is said to be an inertial system if:							
		(a)	Newton's first law of motion valid						
		(b)	Newton's second law of motion va	lid	xb = a (3)				
		(c)	Newton's third law of motion valid	ı					
		(d)	None of these.		(viti) if A is a vector potential fixen the				
	(ii)	The	n:	ll red	duce to simple Galilean transformations				
		(a)	V = C	(b)	V >> C				
		(c)	V < < C	(d)	None of these				
	(iii)	The	simultaneity in special relativity is		edifferentement medical (a)				
		(a)	relative sent to sool (b)	(b)	constant moleness solutoff (a)				
		(c)	absolute an average one a -	(d)	None of these				
	(iv)	The	time recorded by a clock moving w	vith a	body is known as:				
		(a)	Time dilation	(b)	Proper time				
		(c)	Fixed time	(d)	None of these				
VTM	I—142	201	. 1		(Contd.)				

(v)	The	interval ds is said to be time-like	if:	1
	(a)	$ds^2 = 0$	(b)	$ds^2 < 0$
	(c)	$ds^2 > 0$	(d)	None of these
(vi)	Mas	ss energy equivalence relation is given	en by	: 1
400	(a)	$E = mc^2$	(b)	$E = m_{e^2}$
	(c)	$E = c^2/m$	(d)	None of these
(vii)) Fou	r velocity of a particle is defined a	s :	
	(a)	$u^i = \frac{ds}{dx^i}$		$u^{i} = \frac{dx^{i}}{ds}$
	(c)	$u = \frac{dx}{ds^i}$		$u = \frac{dx^{i}}{ds}$
(viii) If \overline{A}	is a vector potential then the mag	netic 1	field is given by:
	(a)	$\overline{H} = \text{div } \overline{A}$	(b)	$\overline{H} = \text{curl } \overline{A}$
	(c)	$\overline{H} = \Delta \phi \times A$	(d)	None of these
(ix)	The	electric and magnetic field strength	s rem	ain invariant under:
	(a)	Galilean transformations	(b)	Gauge transformations
	(c)	Fourier transformations	(d)	None of these
(x)	The	transformations $\overline{r}^1 = \overline{r} - \overline{v}t$ and $t^1 = \overline{r}$	t are	known as:
	(a)	General Lorentz transformations	(b)	Special Lorentz transformations
	(c)	Simple Galilean transformations	(d)	General Galilean transformations
VTM14	201	2		(Contd.)

UNIT-I

- 2. (a) Discuss the Geometrical interpretations of Lorentz transformations. 4

 (b) Prove that $\nabla^2 \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is invariant under special Lorentz transformations. 4
 - (c) What are the postulates of the special theory of relativity?
- 3. (a) Obtain Galilean transformation equations for two inertial frames in relative motion.
 - (b) Show that the Newton's kinematical equations of motion are invariant under Galilean transformations.
 - (c) Show that the circle $x' + y' = a^2$ in S' is measured to be an ellipse in S if S' moves with uniform velocity relative to S.

UNIT-II

- (a) Deduce the transformations of particle velocities and hence obtain relativistic addition law for velocities.
 - (b) Obtain the transformation of the Lorentz contraction factor $\sqrt{1-\frac{u^2}{c^2}}$
- (a) If u and u' are the velocities of a particle measured in the frames S and S' respectively,
 then obtain the expressions a'x, a'y and a'z for acceleration of a particle.
 - (b) An observer moving along the x-axis of S with velocity V observes a body of proper volume V₀ moving with velocity u along the x axis of S. Show that the observer
 - measures the volume to be equal to $V_0 \sqrt{\frac{(c^2-v^2)(c^2-u^2)}{(c^2-uv)^2}}$.

UNIT-III

6.	(a)	Obtain the metric $ds^2 = -dx^2 - dy^2 - dz^2 + c^2 dt^2$ of the space time geometry of special relativity. Prove that ds^2 is invariant under the Lorentz transformations.
	(b)	Define time-like and space-like intervals. Prove that there exists an inertial system S' in which two events occur at one and the same point if the interval between two events is time-like.
7.	(a)	Obtain the transformations of the components T ¹¹ and T ¹⁴ .
	(b)	Define :
		(i) Four dimensional radius vector
		(ii) Four vector A ^r
		(iii) Light-like interval
		(iv) World line.
		UNIT—IV
8.	(a)	Deduce Einstein's mass-energy equivalence relation.
	(b)	A particle is given a kinetic energy equal to n times it's rest energy m ₀ c ² . What are :
		(i) its speed and
		(ii) momentum?
9.	(a)	Prove that the mass of a moving particle with velocity u is $m = \frac{m_0}{\sqrt{1 - u^2/c^2}}$, where m_0 is
		the mass of the particle when it is at rest.
	(b)	Show that four velocity and four acceleration are mutually orthogonal.

UNIT-V

- 10. (a) Obtain the transformations for electric and magnetic field strengths.
- 6
- (b) Prove that the energy momentum tensor of electromagnetic field is trace free.
- 11. (a) Show that the Lorentz force acting on a particle of charge e is given by $\overline{F}_L = e \left(\overline{E} + \frac{1}{c} \overline{u} \times \overline{H} \right)$.
 - (b) Show that the Hamiltonian for a charged particle moving in an electromagnetic fields is :

5

$$H = \left\{ m_0^2 c^4 + c^2 \left(P - \frac{e}{c} A \right)^2 \right\}^{1/2} + e\phi.$$

affiness blott straggert for strongs with the contract of the contract of

and court of their witting incomplications constitution many carbon and a superscentific for

an about distribution of the convergence that however a first partition of a partition of the convergence (a)

(Contd.)

[Maximum Marks: 60

B.Sc. (Part-III) Semester-VI Examination

6S-MATHEMATICS

Special Theory of Relativity

Paper—XII

Time: Three Hours]

(a) Galilean Transformations

(c) Gudge Transformations

UNW -24776

Not	e :-	(1) Question N	o. 1 is compulsory	and attemp	t it at once only.	
		(2) Solve ONE	question from each	ch Unit.		
1.	Cho	ose the correct a	lternatives :			
	(1)	:	. 1			
		(a) Light like		(b)	Space like	
		(c) Time like		(d)	None of these	
	(2)	If an electromag	netic field is purel	ly electric in	an inertial frames, ther	n the field in s'
		(a) Only electric	С	(b)	Only magnetic	
		(c) Electric as	well as magnetic	(d)	None of these	
	(3)	If φ is a scalar p	otential and A is	the vector p	otential, then the electri	c field is given
		by:				1
		(a) $\overline{E} = \operatorname{grad} \phi$	$\frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	(b)	$\overline{E} = grad \ \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	
		(c) $\overline{E} = -\operatorname{grad} \phi$	$-\frac{1}{c}\frac{\partial \overline{A}}{\partial t}$	(d)	$\overline{E} = -\operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}.$	
	(4)	The electric field	d strength \overline{E} and t	he magnetic	field strength H are in	variant under :

1

(b) Lorentz Transformations

(d) None of these

(5)	The	time recorded by a clock moving wi	th a	body is called as:	1			
	(a)	Absolute time	(b)	Proper time				
	(c)	Improper time	(d)	None of these				
(6)	Len	gth contraction means:			1			
	(a)	Moving rod measures longer	(b)	Rest rod measures longer				
	(c)	Moving rod measures shorter	(d)	Rest rod measures shorter				
(7)	Iner	tial system means the reference system	n wl	nere :	1			
(20) (12.5)	(a)	Newton's first law of motion is valid			0			
	(b)	Newton's second law of motion is v	alid					
	(c)	Newton's third law of motion is vali	d					
	(d)	None of these						
(8)	Fou	r velocity of a particle is a :			1			
	(a)	Unit space like vector	(b)	Unit time like vector				
	(c)	Unit light like vector	(d)	None of these				
(9)	The	simultaneity in special relativity is:			1			
	(a)	Constant	(b)	Relative *				
	(c)	Absolute	(d)	None of these				
(10)	The	interval ds is said to be space-like if			1			
		$ds^2 = 0$	(b)					
	(c)	$ds^2 < 0$	(d)	None of these				
		UNIT—	I					
(a)	Pro	ve that in an inertial frame a body w	itho	ut influence of any forces moves in	a			
		ight line with constant velocity.		āl .	3			
(b)	Sho	w that Newton's kinematical equatio	ns o	f motion are invariant under Galilea	ın			
	tran	sformations.			4			
(c)	Show that $x^2 + y^2 + z^2 - c^2t^2$ is Lorentz invariant.							

2

(Contd.)

2.

UNW-24776

- 3. (p) Show that Lorentz transformation forms a group with respect to multiplication. 4
 - (q) Prove that $\nabla^2 \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ is invariant under special Lorentz transformations.

2

5

3 + 3

(r) What are the postulates of special relativity?

UNIT-II

- 4. (a) Show that in nature no signal can move with a velocity greater than the velocity of light relative to any inertial system.
 - (b) Show that the velocities u and u' measured in two inertial systems and s' are related by :

$$\sqrt{1 - \frac{u^2}{c^2}} = \frac{\sqrt{1 - \frac{{u'}^2}{c^2}} \cdot \sqrt{1 - \frac{v^2}{c^2}}}{\left(1 + \frac{u_x' v}{c^2}\right)},$$

where s' is moving with velocity v relative to s along XX' axis.

- (p) Obtain the transformations for the acceleration of a particle under special Lorentz transformations.
 - (q) Explain:
 - (i) Time Dilation
 - (ii) Length contraction.

UNIT-III

6. (a) Define four vector. Show that:

$$A^{1} = -A_{1}, A^{2} = -A_{2}, A^{3} = -A_{3}, A^{4} = A_{4}.$$

- (b) Prove that there exists an inertial system s' in which the two events occurs at one and the same time if the interval between two events is time like.
- (c) What do you mean by covariant and contravariant tensor of rank two?
- (p) Define: Proper time. Show that the proper time of a moving object is always less than
 the corresponding interval in the rest system.
 - (q) Obtain the transformation of the components T'11 and T'12.
 - (r) What are world points and world line?

UNW -24776 3 (Contd.)

UNIT-IV

 (a) Define four velocity. Prove that the four velocity in component form can be expressed as:

$$u^{i} = \left(\frac{\overline{u}}{c\sqrt{1 - \frac{u^{2}}{c^{2}}}}, \frac{1}{\sqrt{1 - \frac{u^{2}}{c^{2}}}}\right),$$

where $\overline{u} = (u_x, u_y, u_z) = \text{ velocity of the particle.}$

1+3

- (b) Show that the quantity $p^2 \frac{E^2}{c^2}$ is an invariant whose numerical value is $-m_0^2 c^2$. 3
- (c) Prove that four velocity and four acceleration are mutually orthogonal.
- (p) Obtain the mass energy equivalence relation E = mc², where m is the relativistic mass of the particle.
 - (q) Prove that $E = c\sqrt{p^2 + m_o^2c^2}$ and $\frac{dE}{dp} = u$.
 - (r) Define four force. Show that the four force and the four velocity are orthogonal to each other.
 1+2

UNIT-V

10. (a) Define current four vector. Show that $c^2\rho^2-J^2$ is invariant and its value is $p_0^2.c^2$.

1+4

(b) Prove that the set of Maxwell's equations div $\overline{H} = 0$ and curl $\overline{E} = -\frac{1}{c} \frac{\partial \overline{H}}{\partial t}$ can be written

as
$$\frac{\partial F_{ij}}{\partial x^k} + \frac{\partial F_{jk}}{\partial x^i} + \frac{\partial F_{ki}}{\partial x^j} = 0$$
, where F_{ij} is the electromagnetic field tensor.

11. (p) Define electromagnetic field tensor F_{ij} . Express the components of F_{ij} in terms of the electric and magnetic field strengths.

4

(q) Obtain the transformations for electric and magnetic field strengths.

B.Sc. (Part-III) Semester-VI Examination

MATHEMATICS (New)

(Special Theory of Relativity) Paper—XII

		1 aper 2		
Time: T	hree	Hours]		[Maximum Marks: 60
Note :—		Question No. 1 is compulsory.		
	(2)	Attempt ONE question from each un	nit.	
1. Cho	ose 1	the correct alternative :		
(i)	If d	s = 0, then the interval ds is said to	be:	1
	(a)	light like	(b)	space like
	(c)	time like	(d)	None of these
(ii)	Lore	entz transformation reduces to Galilea	ın tra	ansformation if:
	(a)	V = C	(b)	V >> C
	(c)	V < < C	(d)	None of these
(iii)	Sign	nature of the Minkowskian space-time	ds ²	$= -dx^2 - dy^2 - dz^2 + c^2dt^2 \text{ is :} 1$
	(a)	2	(b)	-2
	(c)	3	(d)	1
(iv)	The	transformations $\overline{r}' = \overline{r} - \overline{v}t$ and $t' = t$	are k	known as:
	(a)	General Lorentz transformation	(b)	Special Lorentz transformation
	(c)	Simple Galilean transformation	(d)	General Galilean transformation
(v)	The	time recorded by a clock moving wi	th a	body is known as:
	(a)	Time dilation	(b)	Proper time
	(c)	Fixed line	(d)	None of these
(vi)	The	simultaneity in special relativity is:		1
*	(a)	relative	(b)	constant
27	(c)	absolute	(d)	None of these
VOX—358	25	1		(Contd.)

	(vii) The	four	velocity of	of a particle	e is a unit _		vector.	1
		(a)	space	like			(b)	light like	
		(c)	time	like			(d)	None of these	
	(viii) Mas	s ener	rgy equiv	alence rela	tion is given	by	:	1
		(a)	E = 1	mc ²			(b)	$E = m/c^2$	
		(c)	E = 0	c^2/m			(d)	None of these	
	(ix)	The	scala	r potentia	ıl o and ve	ctor potentia	l A	of the electric field is:	1
		(a)	$\overline{E} = g$	$\operatorname{grad} \phi - \frac{1}{c}$	$\frac{\partial \overline{A}}{\partial t}$		(b)	$\overline{E} = \text{grad } \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	
		(c)	$\overline{E} = -$	grad ϕ —	1 ∂Ā c ∂t		(d)	$\overline{E} = -\operatorname{grad} \phi + \frac{1}{c} \frac{\partial \overline{A}}{\partial t}$	
	(x)	Fou	r force	e f i =					1
		(a)	$\frac{du^{i}}{ds}$				(b)	$\frac{dx^{i}}{ds}$	
		(c)	$\frac{dp^{i}}{ds}$	*		¥0	(d)	None of these	
						UNIT—	[
2.	(a)	Def	ine ine	ertial syst	em. Prove t	hat in an ine	rtial	frame a body, without infl	uence of any
		forc	es, mo	oves in a	straight lin	e with cons	tant	velocity.	1+3
	(b)	Disc	cuss th	ne Geome	etrical inter	pretation of	Lore	entz transformation.	4
	(c)	Sho	w that	$x^2 + y^2$	$+ z^2 - c^2 t^2$	is Lorentz ii	nvar	iant.	2
3.	(p)	Prov	ve that	Newton'	s fundamer	ital equation	s of	motion are invariant under	the Galilean
		tran	sforma	ation.		6			4
	(q)	Wha	at are	the postu	lates of sp	ecial relativi	ty?		2
	(r)	Sho	w that	the three	e dimension	nal volume e	lem	ent dxdydz is not Lorentz	invariant but
		the	four d	imension	al volume	elements dx	dydz	dt is Lorentz invariant.	4
vo:	K—35	825				2			(Contd.)

UNIT-II

- (a) Derive the transformation for the acceleration of a particle. Prove that when u, v < < c, these transformation deduce to Galilean one.
 - (b) Obtain the relativistic transformation formulae for the velocities of particle. 4
- 5. (p) Obtain the transformation of the Lorentz contraction factor $\sqrt{1-\frac{u^2}{c^2}}$.
 - (q) An observer moving along the x-axis of S with velocity V observes a body of proper volume V₀ moving with velocity u along the x-axis of S. Show that the observer

measures the volume to be equal to
$$V_0 \sqrt{\frac{(c^2-v^2)(c^2-u^2)}{(c^2-uv)^2}}$$
.

UNIT-III

6. (a) Define four tensor.

Prove that:

(i)
$$T^{11} = \alpha^2 \left\{ T^{11} - \frac{V}{C} T^{14} - \frac{V}{C} T^{41} + \frac{V^2}{C^2} T^{44} \right\}$$

(ii)
$$T^{12} = \alpha \left\{ T^{12} - \frac{V}{C} T^{42} \right\}$$
 1+2+2

- (b) Define length of four radius vector. Show that $x^1 = -x_1$, $x^2 = -x_2$, $x^3 = -x_3$, $x^4 = x_4$ and then deduce that $x_1 = (-\overline{r}, \text{ ct})$.
- (p) Define four vector A^r. Show that the square of the length of a four vector is invariant under Lorentz transformation.
 - (q) Prove that there exists an inertial system s' in which the two events occur at one and the same time if the interval between two events is space like.

UNIT-IV

8. (a) Prove that
$$L = -m_0 c^2 \sqrt{1 - \frac{u^2}{c^2}}$$
 for the relativistic Lagrangian.

VOX—35825 3 (Contd.)

(b) Define four velocity. Prove that the four velocity, in component form can be expressed as:

$$u^{i} = \left(\frac{\overline{u}}{c \cdot \sqrt{1 - \frac{u^{2}}{c^{2}}}}, \frac{1}{\sqrt{1 - \frac{u^{2}}{c^{2}}}}\right),$$

where $\overline{u} = (u_1, u_2, u_3) = \text{ordinary z-dimensional velocity of the particle.}$

- 9. (p) Obtain Einstein's mass energy equivalence relation.
 - (q) Define four velocity and four acceleration. Show that four velocity and four acceleration are mutually orthogonal.
 2+3

UNIT-V

- 10. (a) Define electric and magnetic field strenths in terms of scalar ϕ and vector potential \overline{A} and show that \overline{E} and \overline{H} remain invariant under Gauge transformation. 2+3
 - (b) Prove that the Lagrangian for a charge particle in electromagnetic field is :

$$L = -m_o c^2 \sqrt{1 - \frac{u^2}{c^2} + \frac{e}{c} \vec{A} \cdot \vec{u} - e\phi}.$$

11. (p) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is:

$$H = \left\{ m_0^2 c^4 + c^2 \left(P - \frac{e}{c} A \right)^2 \right\}^{1/2} + e\phi.$$
 5

 (q) State Maxwell's equations of electromagnetic theory in vacuum. Also find its equations in component form.