B.Sc. (Part—III) Semester—V Examination MATHEMATICS (New) (Mathematical Analysis)

Paper—IX

Time: Three Hours]

[Maximum Marks : 60

N.B.:— (1) Question No. 1 is compulsory. Attempt once.

- (2) Attempt ONE question from each Unit.
- 1. Choose the correct alternatives:
 - (i) Let $f: [0, 1] \to R$ be Riemann integrable. Which of the following is always true:
 - (a) f is continuous
 - (b) f is monotone
 - (c) f has only finite number of discontinuities
 - (d) the set of discontinuties of f may be infinite?

1

- (ii) An improper integral $\int_{a}^{\infty} \frac{dx}{x^{p}}$, $a \in R$ is convergent if:
 - (a) p < 1

(b) p > 1

(c) $p \ge 1$

(d) p = 1

1

- (iii) $\beta(m, n)$ is:
 - (a) m n

(b) $\frac{(m+n)}{m n}$

(c)
$$\frac{\boxed{m} \boxed{n}}{\boxed{(m+n)}}$$

(d)
$$\frac{\lceil m \rceil n}{\lceil (m-n) \rceil}$$

1

- (iv) In the real line R, which of the following is true?
 - (a) Every bounded sequence converges
- (b) Every sequence converges
- (c) Every Cauchy sequence converges
- (d) None of the above

1

- (v) Every neighbourhood is a/an:
 - (a) Closed set

(b) Open set

(c) Open closed set

(d) None of the above

1

- (vi) A function u(x, y) is harmonic in region D if:
 - $(a) \quad u_{xx} u_{yy} = 0$

(b) $u_{xy} + u_{yx} = 0$

(c) $u_{xy} - u_{yx} = 0$

(d) $u_{xx} + u_{yy} = 0$

	(a) Harmonic function	(b)	Analytic function
	(c) Conjugate function	(d)	Not analytic function 1
(viii)	If $f(z)$ and $\overline{f(z)}$ are both analytic functions	then	f(z) is:
	(a) Identically zero	(b)	Constant
	(c) Unbounded	(d)	None of the above 1
(ix)	The points z where $ e^z = 10$ form a:		
	(a) Circle	(b)	Straight line
	(c) Hyperbola	(d)	Parabola 1
(x)	A bilinear transformation with two non-infin	nite 1	fixed points α and β having Normal form
	$\frac{w - \alpha}{w - \beta} = k \left(\frac{z - \alpha}{z - \beta} \right) \text{ is Elliptic if :}$		
	(a) $ \mathbf{k} \neq 1$, k is real	(b)	$k \neq 1$, k is not real
	(c) $ k = 1$	(d)	None of the above 1
	UNIT—	I	
(a)	Prove that every continuous function is integ	rable	4
(b)	Let the function f be defined as:		
	f(x) = 1, when x is rational = -1, when x is irrational		
	Show that f is not R-integrable over [0, 1]	but	$ f \in R [0, 1].$ 3
(c)	Show that any constant function defined on	a bo	unded closed interval is integrable. 3
(p)	If f is a bounded and integrable function ov prove that:	er [a	, b] and M, m are bounds of f over [a, b],
	$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$		4
(q)	Prove that $\frac{2}{17} < \int_{-1}^{2} \frac{x}{1+x^4} dx < 1/2$.		- 3
(r)	If f is continuous and non-negative on [a, b	o], th	en show that $\int_{a}^{b} f(x) dx \ge 0$.

(vii) The function $f(z) = \sqrt{|xy|}$ is _____ at the origin.

2.

3.

UNIT-II

- 4. (a) Prove that the integral $\int_{a^+}^{b} \frac{dx}{(x-a)^p}$ converges if p < 1 and diverges if $p \ge 1$.
 - (b) Show that $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$ converges absolutely.
 - (c) Show that $\int_{0}^{\infty} e^{-x^{2}} dx$ converges.
- 5. (p) Prove that $\beta(m, n) = \frac{\lceil m \rceil n}{\lceil m + n \rceil}$.
 - (q) Prove that $\int_{0}^{\pi/2} \sin^2 \theta \cos^4 \theta \, d\theta = \frac{\pi}{32}.$
 - (r) Prove that (n+1) = n(n).

UNIT-III

- 6. (a) If f(z) = u(x, y) + iv(x, y) be analytic in a region D, then prove that u(x, y) and v(x, y) satisfy Cauchy-Riemann equations.
 - (b) If f(z) and $f(\overline{z})$ are analytic functions, prove that f(z) is constant.
 - (c) Show that $u = 2x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate function. Hence find f(z) = u + iv.
- 7. (p) If u and v are harmonic in region R, prove that $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial y}\right)$ is analytic in R.
 - (q) If the function f(z) = u + iv be analytic in domain D then prove that, the family of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ form an orthogonal system, where c_1 and c_2 are arbitrary constants.
 - (r) Determine a, b, c, d so that the function $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ is analytic.

UNIT-IV

- 8. (a) Prove that, every bilinear transformation with two non infinite fixed points α , β is of the form $\frac{w-\alpha}{w-\beta} = k\frac{z-\alpha}{z-\beta}$, when k is constant.
 - (b) Under the transformation $w = \sqrt{2} e^{i\pi/4} z$, find the image of the rectangle bounded by x = 0, y = 0, x = 2 and y = 3.

- 9. (p) Prove that the cross ratio remains invariant under a bilinear transformation.
 - (q) Prove that under the transformation $w = \frac{z i}{iz 1}$ the region $I_m(z) \ge 0$ is mapped into the region $|w| \le 1$.

UNIT-V

- 10. (a) Show that $d(x, y) = |x y|, \forall x, y \in R$ defines a metric on R.
 - (b) Define:
 - (i) Limit point
 - (ii) Boundary point.
 - (c) Prove that every neighbourhood is an open set.
- 11. (p) Define:
 - (i) Complete metric space
 - (ii) Open set.
 - (q) Prove that every convergent sequence in a metric space is a Cauchy sequence.
 - (r) Let X be a metric space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$ then, prove that $d(x_n, y_n) \to d(x, y)$.

5

B.Sc. (Part—III) Semester—V Examination

5S: MATHEMATICS (New)

(Mathematical Methods)

Paper-X

CTO		T11		
lime	:	Three	Н	ours

[Maximum Marks: 60

Note:—(1) Question No.1 is compulsory and attempt it once.

- (2) Solve ONE question from each Unit.
- 1. Choose the correct alternative (1 mark each):
 - (i) If $p_{a}(x)$ is the solution of Legendre's D.E., then $p_{a}(-1)$ is:
 - (a) -1

(b)

(c) $(-1)^n$

- (d) 0
- (ii) The value of integral $\int_{-1}^{1} x^2 p_1(x) dx$, where $p_1(x)$ is Legendre's polynomial of degree 1, equals:
 - (a) $\frac{2}{3}$

(b) $\frac{4}{35}$

(c) $\frac{4}{15}$

(d) 0

- (iii) The value of $J_{1/2}(x)$ equals:
 - (a) $\sqrt{\frac{2}{n\pi}}\cos x$

(b) $\sqrt{\frac{2}{n\pi}} \sin x$

(c) $\sqrt{\frac{n\pi}{2}}\cos x$

- (d) $\sqrt{\frac{n\pi}{2}} \sin x$
- (iv) Eigen functions corresponding to different Eigen values are :
 - (a) Linearly dependent

(b) Linearly independent

(c) Real

- (d) None
- (v) The coefficient in a half range sine series for the function $f(x) = \sin x$ defined on $[0, \ell]$ is given by:
 - (a) $\int_{0}^{\ell} \sin x \cos \frac{n\pi x}{\ell} dx$

(b) $\int_{0}^{\ell} \cos x \cos \frac{n\pi x}{\ell} dx$

(c) $\frac{2}{\ell} \int_{0}^{\ell} \sin x \sin \frac{n\pi x}{\ell} dx$

(d) $\frac{2}{\ell} \int_{0}^{\ell} \sin x \sin \frac{n\pi x}{\ell} dx$

(vi) T	The function $f(x) = (-\sin x)^3$ is:		
(2	a) Odd	(b)	Even
(0	e) Even and Odd	(d)	None of these
(vii) If	f L[f(t)] = F(s), then $L[f(at)]$ is:		
(8	a) $F(s-a)$	(b)	$\frac{1}{a} F\left(\frac{s}{a}\right)$
(6	c) $F\left(\frac{s}{a}\right)$	(d)	$a F\left(\frac{s}{a}\right)$
(viii) T	The value of $L^{-1}\left[\frac{1}{s-a}\right]$ is:		
. (2	a) 1	(b)	t
(0	c) e ^t	(d)	e ^{at}
(ix) T	The Fourier sine transform of $f(x) = e^{ -x }$, x	≥ 0	is:
(8	a) $\frac{\lambda}{1+\lambda^2}$	(b)	$\frac{\lambda}{1-\lambda^2}$
(6	c) $\frac{2\lambda}{1-\lambda^2}$	(d)	$\frac{1}{1+\lambda^2}$
(x) If	$f F[f(x)] = F(\lambda)$, then the Fourier transform	of f	(ax) is:

(a)
$$F\left(\frac{\lambda}{a}\right)$$

(b)
$$\frac{1}{|a|}F\left(\frac{\lambda}{a}\right)$$
, $a = 0$

(c)
$$\frac{1}{|a|}F(\lambda)$$
 $a \neq 0$

(d)
$$\frac{1}{|a|} F\left(\frac{\lambda}{a}\right) a \neq 0$$

10

UNIT-I

(a) Show that $p_n(x)$ is the coefficient of h^n in the ascending power series expansion of $(1-2xh+h^2)^{-1/2}$.

(b) Prove that
$$np_n = xp_n^1 - p_{n-1}^1$$
.

3.

(c) Prove that
$$x^2 = \frac{1}{3}p_0(x) + \frac{2}{3}p_2(x)$$
.

	UNII—II							
4.	(a)	Prove that $J_{3/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$.	4					
	(b)	Prove that $xJ_p^1 = pJ_p - xJ_{p+1}$.	4					
	(c)	Evaluate $\int_{a}^{b} J_0(x) \cdot J_1(x) dx$.	2					
5.	(p)	Prove that Eigen values of the S-L problem are real.	4					
	(q)	Prove that $(x^p \cdot J_p)' = x^p J_{p-1}$	3					
	(r)	Prove that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.	3					
		UNIT—III						
6.	(a)	If the trigonometric series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to for	(x) in					
		$c \le x < c + 2\pi$, then find the Fourier coefficient of $f(x)$.	5					
	(b)	Obtain Fourier Series in [0, 2] for the function $f(x) = x^2$.	5					
7.	(p)	Obtain Fourier Series in $[-\pi, \pi]$ for the function :						
		$f(x) = \begin{cases} -\pi , & -\pi < x < 0 \\ x , & 0 < x < \pi \end{cases}$	5					
	(q)	Obtain Fourier cosine series in $[0, \pi]$ for the function $f(x) = \sin x$.	5					
		UNIT—IV						
8.	(a)	Prove that $L[t^n \cdot f(t)] = (-1)^n \frac{d^n}{ds^n} F(s), n = 1, 2, 3$	4					
	(b)	Find L[sin t · cos 2t · cos 3t].	3					
	(c)	Show that $L(t^n) = \frac{n!}{s^{n+1}}, s > 0$.	3					
YBC	—153	05 3	Contd.)					

5

5

3. (p) Prove that $\int_{-1}^{1} [p_x(x)]^2 dx = \frac{2}{2n+1}$.

(q) Prove that $p_x(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$.

- 9. (p) Solve the D.E. y'' + 4y' = -8t, y(0) = y'(0) = 0.
 - (q) Find the inverse Laplace transform of $\frac{1}{(s-2)(s+2)^2}$ by using Convolution theorem.
 - (r) Prove that $L(u_{tt}) = s^2 L(u(x, t)) su(x, 0) u_t(x, 0)$.

UNIT---V

- 10. (a) Find the finite Fourier sine and cosine transform of $f(x) = \sin \epsilon x$ in $(0, \pi)$.
 - (b) Find the Fourier transform of the function:

$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$

- (c) Prove that $\int_0^\ell f'(x) \sin \frac{n\pi x}{\ell} dx = -\frac{n\pi}{\ell} F_c(n)$.
- 11. (p) Find the Fourier sine and cosine transform of the function $f(x) = x^{n-1}$, n > 0.
 - (q) Find finite Fourier cosine transform of u_x and u_{xx} ; where u = u(x, t).

4

(Contd.)

B.Sc. (Part—III) Semester—V Examination MATHEMATICS

Paper—IX

(Analysis)

Time: 1	Three	Hours]		[Maximum Marks : 60
N.B. :-	2.7	Question No. 1 is compulsory. Attempt ONE question from each unit.		of distributed (a)
1. Cho	oose	the correct alternatives :		ing stining of (2) 1(40)
(i)	$\int_{1}^{\infty} \frac{dx}{x}$	x converges to:		
	(a)	1 Turns or mawolish adv	(b)	1 a sell free all of the
	(c)	2 anogravitos si	(d)	3
(ii)	If f	be a bounded function defined on [a, b]	and	p be any partition of [a, b] then
	U(p	, -f) is:		1
	(a)	L(p, f)	(b)	U(p, f) .
	(c)	-L(p, f)	(d)	-U(p, f)
(iii)) If f	(z) and $f(\overline{z})$ are both analytic, then $f(z)$ is	· bosto	upas edout 1 (220 d (d) 1
	(a)	Unbounded	(b)	Constant
	(c)	Identically zero	(d)	None of these
(iv)	A f	function F(x, y) is harmonic in D if:		e of See book of S.H. co. 1
	(a)	$F_{xx} + F_{yy} = 0$	(b)	$F_{xx} - F_{yy} = 0$
	(c)	$F_{xy} + F_{yx} = 0$	(d)	None of these

VTM-13404

	(v)	If th	the transformation $w = \frac{2z+3}{z-4}$ transformation $w = \frac{2z+3}{z-4}$	ansforms the cir	$cle x^2 + y^2 - 4x = 0 into$	S, then
		S is	: 25 Jan 1997			1
		(a)	A circle	(b)	A straight line	
		(c)	The region $R_e(w) \ge 0$	(d)	The region $R_e(w) \le 0$	
	(vi)	АВ	ilinear transformation with only	one fixed point	is:	- 1
		(a)	Loxodromic	(b)	Elliptic	
		(c)	Hyperbolic	(d)	Parabolic	
	(vii)	If {	A_{α} } be a finite or infinite collection.	etion of sets A_{α}	then $\left[\bigcup_{\alpha} A_{\alpha}\right]^{c} =$	1
		(a)	$\bigcap_{\alpha}A_{\alpha}^{c}$	(b)	$\bigcup_{\alpha} A_{\alpha}^{c}$	
		(c)	$\bigcap_{\alpha} A_{\alpha}$	(d)	$\bigcup_{\alpha} A_{\alpha}$	
	(viii)	In th	ne real line R, which of the foll	owing is true?		1
		(a)	Every Cauchy sequence is conv	vergent		
		(b)	Every sequence is bounded			
		(c)	Every sequence is convergent			
		(d)	None of these			
	(ix)	A m	etric space (X, d) is complete i	f:		1
		(a)	Every convergent sequence in	X is a Cauchy s	equence	
		(b)	Every Cauchy sequence in X is	s convergent in	X	
		(c)	Every convergent sequence in	X is not a Cauc	ny sequence	
		(d)	None of these			
	(x)	If B	is closed and K is compact, th	en $B \cap K$ is:		. 1
		(a)	Bounded	(b)	Closed	
		(c)	Convergent	(d)	Compact	
VTN	1—134	404		2		(Contd.)

UNIT-I TAN HOUSE AND SELECT SE

- 2. (a) If f be continuous and integrable on [a, b] then prove that $\int_a^b f(x) dx = f(c)$ (b a), where c is some point in [a, b].
 - (b) If m and M are glb and lub of f(x) in [a, b] then show that

$$m(b-a) \le L(p, f) \le U(p, f) \le M(b-a).$$

- (c) If f is bounded function defined on [a, b] and p be any partition of [a, b] then prove that:
 - (i) U(p, -f) = -L(p, f)

(ii)
$$L(p, -f) = -U(p, f)$$
.

- 3. (p) Show that:
 - (i) $\int_{0}^{\infty} e^{-rx} dx$ converges if r > 0 and diverges if $r \le 0$.
 - (ii) $\int_{a}^{\infty} \frac{dx}{x^{p}}$ converges if p > 1 and diverges if $p \le 1$ and a > 0.
 - (q) Using limit test, show that the integrals :

(i)
$$\int_{2}^{\infty} \frac{x}{1-x^2} dx = \infty \text{ and}$$

(ii)
$$\int_{1}^{\infty} \frac{x \, dx}{3x^4 + 5x^2 + 1}$$
 coverges absolutely.

UNIT-II

- 4. (a) If w = f(z) = u + iv be analytic in D and $z = re^{i\theta}$, where u, v, r, θ are the real numbers then prove that $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.
 - (b) Separate sin z into real and imaginary parts. Use Cauchy-Riemann conditions to show that : $\sin z$ is analytic. Prove that $\frac{d}{dz}(\sin z) = \cos z$.

5. (p) Find an analytic function f(z) such that $R. \{f'(z)\} = 3x^2 - 4y - 3y^2$ and f(1 + i) = 0, using Milne-Thomson method. (q) If f(z) = u + iv be analytic in the region D, where u and v have continuous partial derivatives upto the second order, then prove that u and v both are harmonic functions. 5 UNIT-III (a) Prove that every bilinear transformation with two non-infinite fixed points α , β is of the form $\frac{w-\alpha}{w-\beta} = K\left(\frac{z-\alpha}{z-\beta}\right)$, where K is a constant. 5 (b) Find the fixed points of the bilinear transformation $w = \frac{(2+i)z-2}{i+z}$, what is its normal 5 form? Show that the transformation is Loxodromic. (p) Find the image of the rectangle bounded by x = 0, y = 0, x = 2 and y = 3 under the transformation $w = \sqrt{2} e^{i\pi/4}$. z 5 (q) Prove that the cross ratio remains invariant under a bilinear transformation. 5 UNIT-IV (a) If X be a metric space with metric d then show that d, defined by 8. $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, is also a metric on x. 5 (b) If $\{x_n\}$ and $\{y_n\}$ are sequences in a metric space X such that $x_n \to x$ and $y_n \to y$. Then show that $d(x_n, y_n) \rightarrow d(x, y)$.

VTM—13404 (Contd.)

(g) Prove that the union of two nowhere dense sets in a metric space is nowhere dense.

5

(p) Prove that the set A is open if and only if its complement is closed.

9.

UNIT-V

10.	(a)	Prove that a mapping f of a metric space X into a metric space Y is continuous	on
		X if and only if f-1(V) is open in X for every open set V in Y.	6

(b) Let $f: R \to R$ such that

$$f(x) = \begin{cases} x & , & x \text{ is irrational} \\ -x & , & x \text{ is rational.} \end{cases}$$

Show that f is continuous only at x = 0.

4

- 11. (p) Let X, Y be metric spaces and f: X → Y. Prove that f is continuous iff
 f⁻¹(B') ⊆ [f⁻¹(B)]' for every subset B of Y, B' = int B.
 - (q) If f be a continuous mapping of a connected metric space X into a metric space Y.
 Then prove that f(x) is connected.

A REST

- ararran in

B.Sc. (Part-III) Semester-V Examination MATHEMATICS (NEW)

Mathematical Analysis

Paper—IX

Time: Three	ee Hours]	[Maximum Marks :	60
Note : (1) Question No. 1 is compulsory as	and attempt it once only.	
, (2) Attempt ONE question from each	ch unit.	
1. Choose	e the correct alternatives :		
(i) Co	onsider $P = (1, 2, 4)$ be a partition	of interval [1, 4] then $\mu(P)$ is :	1
(a)) 1	(b) 0	
(c)) 2	(d) 4	
(ii) Le	et f be a bounded function defined	d on [a, b] and p be any partition of [a, b] t	hen
L((p, -f) is:		1
(a)	-U(p, f)	(b) $-L(p, f)$	
(c)) L(p, f)	(d) U(p, f)	
(iii) Aı	n integral $\int_{0}^{\infty} e^{-rx} dx$ is convergent	if:	1
(a)) r < 0	(b) r > 0	
(c)	r = 0	(d) None of these	
· (iv) Th	he value of $1/2$ is:		1
(a)) 1/2	(b) 1	
(c)) $\sqrt{\pi}$	(d) π	
(v) If	f(z) = (x + ay) + i(bx + y) is analy	lytic then:	1
(a)	a = b	(b) $a + b = 0$	
(c)) $a = 1, b = 0$	(d) $a > b$	
UNW-27445	5(Re)	1 (Con	ntd.)

(vi)	Let	f(z) = u + iv be analytic function and	1 z =	re ⁱ⁰ then C-R equations are :
	(a)	$u_{r} = v_{0}, \ u_{0} = -v_{r}$	(b)	$\mathbf{u}_{\mathbf{r}} = \mathbf{r} \mathbf{v}_{\theta}, \mathbf{u}_{\theta} = -\frac{1}{r} \mathbf{v}_{\mathbf{r}}$
	(c)	$\mathbf{u}_{\mathbf{r}} = \frac{1}{\mathbf{r}} \mathbf{v}_{\theta}, \mathbf{v}_{\mathbf{r}} = -\frac{1}{\mathbf{r}} \mathbf{u}_{\theta}$	(d)	$u_{r} = v_{\theta}, u_{\theta} = v_{r}$
(vii)		Mobius transformation which is not idented its:	ntity	can have the following number of fixed
	(a)	5	(b)	4
	(c)	3	(d)	2
(viii)	A b	ilinear transformation with two non-inf	inite	fixed points p and q have normal form
	w -	$\frac{-p}{-q} = k \left(\frac{z-p}{z-q} \right)$ then BT is elliptic trans	form	nation if:
	(a)	k == 1	(b)	k ≠ 1
	(c)	k = 0	(d)	k = 2
(ix)	For	any finite collection A_1, A_2, \dots, A_n of	ope	n sets $\bigcap_{\alpha=1}^{n} A_{\alpha}$ is:
	(a)	Closed	(b)	Open
	(c)	Semi open	(d)	None of these
(x)	Eve	ry neighbourhood of a point is:		1
	(a)	Closed	(b)	Finite
	(c)	Open	(d)	ф
-		UNIT—	I	
(a)		a bounded function f defined on [a, b] ist a partition P of [a, b] such that U(p		egrable on [a, b] iff for each $\epsilon > 0$ there - L(p, f) $\leq \epsilon$. Prove this.
(b)	Let	the function $f(x)$ be defined as $f(x)$) = {	1, x is rational Show that f is not -1, x is irrational.
	R-ir	ntegrable over $[0, 1]$, but $ f \in R$ $[0, 1]$	1].	5

5

(Contd.)

2.

UNW--27445(Re)

(b) Prove that every continuous function is integrable.

UNIT-II

4. (a) Let f(x), $g(x) \in C$, $a \le x < \infty$ and $0 \le f(x) \le g(x)$, $\forall x \ge a$. Then prove that :

(i)
$$\int_{a}^{\infty} g(x) dx < \infty \Rightarrow \int_{a}^{\infty} f(x) dx < \infty \text{ and}$$

(ii)
$$\int_{a}^{\infty} f(x) dx = \infty \Rightarrow \int_{a}^{\infty} g(x) dx = \infty.$$

(b) Show that
$$\int_{2}^{\infty} \frac{x^2}{\sqrt{x^7 + 1}} dx$$
 is convergent.

(c) Show that
$$\int_{1}^{\infty} \frac{\sin x}{x^2} dx$$
 converges absolutely.

5. (a) Prove that:

$$1/2 = \sqrt{\pi}$$
.

(b) Evaluate:

$$\int_{0}^{\infty} \frac{x^8 (1-x^6)}{(1+x)^{24}} \, \mathrm{d}x \, .$$

(c) Show that:

$$\beta(m, n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta dx.$$
 3

UNW-27445(Re)

- UNIT-III (a) Prove that a necessary condition that f(z) = u + iv be analytic in a region D is that 6. $u_x = v_y$ and $u_y = -v_x$. 5 (b) Show that the function $w = e^z$ is analytic function and find $\frac{dw}{dz}$. 5
- (a) If the function f(z) = u + iv is analytic in D then prove that families of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ form an orthogonal system, where c_1 and c_2 are constants.
 - (b) If f(z) and $f(\bar{z})$ are analytic functions then prove that f(z) is constant. 3
 - (c) Show that $w = e^{\overline{z}}$ is not analytic function for any z. 3

- 8 (a) Prove that the bilinear transformation is a combination of translation, rotation, stretching 5 an inversion transformation.
 - (b) Consider the transformation $w = ze^{i\pi^4}$ and determine the region in the w-plane corresponding to the triangular region bounded by the lines x = 0, y = 0 and x + y = 1 in the z-plane.
- (a) Prove that every bilinear transform ation with single non-infinite fixed point α can be put in the normal form $\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + k$, where k is constant. 5
 - (b) Find the bilinear transformation which maps the points z = 1, i, -1 into the points $w = 0, 1, \infty$ 5

UNIT-V

- 10. (a) Let the mapping $d: c[0, 1] \times c[0, 1] \rightarrow R$ be defined by $d(f, g) = \int_{0}^{1} |f(x) g(x)| dx$.
 - Show that d is metric on c[0, 1].
 - (b) Let X be a metric space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, then show that $d(x_n, y_n) \to d(x, y)$.
- 11. (a) Define neighbourhood of a point in a metric space X and prove that every neighbourhood of a point is open set. 5
 - (b) Prove that every convergent sequence is Cauchy sequence and give an example of sequence which is Cauchy sequence but not convergent. 5

UNW-27445(Re) 4 400

B.Sc. Part—III Semester—V Examination

MATHEMATICS (NEW)

(Mathematical Analysis)

Paper—IX

Tim	e : T	hree Hours]	[Maximum Marks : 60
		N.B. :— (1) Question No. 1 is comp	pulsory.
		(2) Attempt ONE question	from each Unit.
1.	Cho	ose the correct alternatives :-	
	(i)	If $P_1 = (1, 2, 4)$ and $P_2 = (1, 3, 4)$ be to P_1 and P_2 is:	wo partitions of [1, 4] then common refinement of
		(a) (1, 2, 4)	(b) (1, 3, 4)
	69	(c) (1, 4)	(d) (1, 2, 3, 4)
	(ii)	Let F be bounded function defined or any real number then $U(P, \alpha f)$ is :	In [a, b] and P be any partition of [a, b], if $\alpha < 0$ is
		(a) α L(P, f)	(b) α U(P, f)
		(c) U(P, f)	(d) None of these
	(iii)	An improper integral $\int_{a_{+}}^{b} \frac{1}{(x-a)^{p}} dx$ is d	ivergent if:
		(a) p≥1	(b) p < 1
		(c) $p = \frac{1}{2}$	(d) None of these
	(iv)	$\beta(m, n)$ is:	1
		(a) $\frac{\overline{m+n}}{\overline{m}\overline{n}}$	(b) $\frac{\lceil m \rceil n}{\lceil m+n \rceil}$
		(c) $\frac{\lceil m \rceil n}{\lceil m - n \rceil}$	(d) mn.

VOX—35304 1 (Contd.)

	(v)	A function $u(x, y)$ is harmonic in D if :		*	1
		(a) $u_{xx} + u_{yy} = 0$	(b)	$\mathbf{u}_{xx} - \mathbf{u}_{yy} = 0$	
		(c) $u_{xy} + u_{yx} = 0$	(d)	$\mathbf{u}_{xx} - \mathbf{u}_{xy} = 0$	
	(vi)	Let u, v be real valued function define	ed on	\mathbb{R}^2 and $f(z) = u + iv$; $f(z) = u - iv$. If f is a	ın
		analytic function and f is not constant,	hen	:	1
		(a) I is always analytic	(b)	f may or may not be analytic	
		(c) I is never analytic	(d)	$f + \overline{f}$ is analytic	
	(vii)	A bilinear transformation $w = \frac{az + b}{cz + d}$, is	conf	formal if:	1
		(a) $ad - bc = 0$	(b)	$a \neq 0, b \neq 0$	
		(c) $ad - bc \neq 0$	(d)	$c \neq 0, d \neq 0$	
	(viii)	A bilinear transformation with two no	n-inf	inite fixed points α & β having Normal for	m
		$\frac{w-\alpha}{w-\beta} = K\left(\frac{z-\alpha}{z-\beta}\right) \text{ is Hyperbolic if :}$			1
		(a) $ K = 1$	(b)	$ K \neq 1$, K is real	
		(c) $ K \neq 1$, K is not real	(d)	None of these	
	(ix)	Let (X, d) be metric space and $A \subset X$, unbounded then :	A is	nonempty the diameter of A is $d(A)$ if A	is 1
		(a) $d(A) < \infty$	(b)	$d(A) = -\infty$	
		(c) $d(\Lambda) = \infty$	(d)	d(A) = 1	
	(x)	Let A be a nonempty closed subset of			1
		(a) open		closed	
		(c) •	081-0-500	None of these.	
	/ X		IT—		4
4.	(a)	Prove that if $f(x)$ is monotonic function	n in.[a, b) then it is integrable on [a, b].	4
	(b)	If f, $g \in R[a, b]$ and $f(x) \le g(x)$, $\forall x \in$	[a, b], then prove that $\int_a^b f(x)dx \le \int_a^b g(x)dx$.	3
	(c)	Show that any constant function define	ed or	[a, b] is integrable on [a, b].	3

2

VOX-35304

(Contd.)

- (b) Let f(x) be a bounded function defined on [a, b] with bounds m and M. Then prove that : $m(b-a) \le L(P, f) \le U(P, f) \le M(b-a)$ for any partition P of [a, b].
- (c) Define Darboux Upper and Lowers sums for bounded function f(x) defined on [a, b] and find them for function f(x) with bounds $m_1 = 1$, $m_2 = 2$, $m_3 = 3$, $m_4 = 4$ and $m_1 = 2$, $m_2 = 3$, $m_3 = 4$, $m_4 = 5$ for the partition $P = \{1, 3, 4, 5, 6\}$ of [1, 6].

UNIT-II

- 4. (a) Prove that $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1 and diverges if $p \le 1$ and a > 0.
 - (b) Show that $\int_{2}^{\infty} \frac{x^3}{\sqrt{x^7 + 1}} dx$ is divergent.
 - (c) Show that $\int_{2}^{\infty} \frac{\cos x}{\sqrt{1+x^3}} dx$ is Absolutely convergent.
- 5. (a) Prove that $\beta(m, n) = \frac{\lceil m \rceil n}{\lceil m + n \rceil}$.
 - (b) Show that $\int_{0}^{1} \sqrt{x(1-x)} \, dx = \pi/8$.
 - (c) Prove that $\ln = \int_0^1 \left(\log \frac{1}{x} \right)^{n-1} dx$.

UNIT-III

- 6. (a) If $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic function in D, then prove that $u_r = \frac{1}{r}v_\theta$ and $v_r = -\frac{1}{r}u\theta$, CR equations in polar coordinates.
 - (b) Using Milne-Thomson method construct analytic function f(z), whose real part is $e^{-x}(x \cos y + y \sin y)$.

(Contd.)

7.	(a)	Let $f(z) = u + iv$ be analytic in the region D, where u and v have continuous partial derivative upto the second order. Then prove that u and v are harmonic functions.	es 5
	(b)	If $w = u + iv$ is analytic function in the region R, then prove that $\frac{\partial(u,v)}{\partial(x,y)} = \left f^{1}(z)\right ^{2}$.	3
	(c)	If $w = u + iv$ is analytic function in D, then prove that $\frac{dw}{dz} = \frac{\partial w}{\partial x}$.	2
		UNIT—IV	
8.	(a)	Prove that the cross-ratio remains invariant under bilinear transformation.	5
	(b)	Find the image of the rectangle bounded by $x = 0$, $y = 0$, $x = 2$ and $y - 3$ under transformation $w = e^{i\pi/4} \times \sqrt{2}$.	he 5
9.	(a)	Prove that every bilinear transformation with single non-infinite fixed point α can be put	in
		the normal form $\frac{1}{w-\alpha} = \frac{1}{z-\alpha} + K$, where K is a constant.	5
	(b)	Find the bilinear transformation which maps the points $z=1,\ i,\ -1$ into point $w=i,\ o,\ -i.$	nts 5
		UNITV	
10.	(a)	Let X be an arbitrary non-empty set. Define d by $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ show that 'd'	is
		metric on X.	5
	(b)	Let (X, d) be a metric space and $x, y, x', y' \in X$. Show that	
		$ d(x, y) - d(x', y') \le d(x, x') + d(y, y').$	3
	(c)	Define :	
		(i) Limit point	
		(ii) Interior point of a set A.	2
11.	(a)	Let Y be a subspace of a complete metric space X. Then prove that Y is complete \Leftrightarrow Y	is
	(L)	closed.	2
	(b)	Prove that every neighborhood of a point is open set. Define:—	. 3
	(c)	(i) Cauchy sequence	
		(ii) Complete metric space.	2
		(-)	_

B.Sc. (Part—III) Semester—V Examination MATHEMATICS (NEW)

Paper—IX

(Mathematical Analysis)

			(Mathematical	, ymen	<i>y</i> 313 <i>y</i>
Tim	e : T	hree	Hours]		[Maximum Marks: 60
Note	e :	(1)	Question No. 1 is compulsory and a	ttemp	ot it once only.
		(2)	Attempt ONE question from each u	nit.	
1.	Cho	ose	the correct alternative :		A and a second and
10	(i)	Let	P = (1, 3, 4, 5, 6) be a partition of	of [1,	6] and if $M_1 = 2$, $M_2 = 3$, $M_3 = 4$
		73	= 5 are lub's of F then U(P, F) is:		1
		(a)	11	(b)	10
8		(c)	12	(d)	16
	(ii)	Let	f be a bounded function defined on [a, b]	and P be any partition of [a, b], P* b
		refi	nement of P. Then L(P, f) and L(P*,	f) sat	isfy:
		(a)	$L(P, f) \le L(P^*, f)$	(b)	$L(P, f) \ge U(P^*, f)$
		(c)	$L(P, f) \ge L(P^*, f)$	(d)	None of these
	(iii)	An	improper integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ converge	erges	to :
		(a)	$\sqrt{\mathbf{x}}$	(b)	-x
		(c)	x	(d)	0
	(iv)	An	integral $\int_{0}^{\infty} e^{-kx} x^{n-1} dx \text{ is :}$		1
		(a)	$k^n n$	(b)	$\frac{n}{k^n}$
		(c)	$\mathbf{k}^{\mathbf{n}}$	(d)	n
	(v)	If a	function $f(z) = u(x, y) + iv(x, y)$ is	Analy	vtic in a region D, then:
		(a)	u = u and $u = v$	(b)	u = -u and $u = -v$

(c) $u_x = v_y$ and $u_y = -v_x$

(d) None of these

	(vi)	If w	= u + iv is analytic function in I	O, then	$\frac{dw}{dz}$ is:	1
		(a)	$-\frac{\partial w}{\partial x}$	(b)	$\frac{\partial \mathbf{w}}{\partial \mathbf{y}}$	
		(c)	$-\frac{\partial w}{\partial y}$	(d)	$\frac{\partial \mathbf{w}}{\partial \mathbf{x}}$	
	(vii)	A N	Mobius transformation w = az, a is	s real nu	mber, is:	1
		(a)	Rotation transformation	(b)	Magnification transformation	
		(c)	Translation transformation	(d)	None of these	
	(viii)	Αb	oilinear transformation with only o	ne fixed	point is:	1
		(a)	Loxodromic	(b)	Parabolic	
		(c)	Elliptic	(d)	Hyperbolic	
	(ix)	For	any collection of $\{A_{\alpha}\}$ open sets,	$\bigcup_{\alpha} A_{\alpha}$	is:	1
		(a)	Closed	(b)	Open	<i>*</i> :
		(c)	Semi-open	(d)	None of these	12
	(x)	A r	metric space (X, d) is complete if	every Ca	auchy sequence in X is:	1
		(a)	Bounded	(b)	Unbounded	
		(c)	Convergent	(d)	Divergent	
			UNI	TI		
2.	(a)				a, b] is integrable on [a, b] iff for partition P of [a, b] with $\mu(P) < \delta$	
	(b)	If f	is function defined by $f(x) = x$ on	[0, 2], th	en show that f is integrable in Rier	nann
			se over [0, 2] and $\int_{0}^{2} f(x) dx = 2$.			5
3.	(a)	Pro	eve that if f is continuous and integrated	rable on	[a, b], then $\int_{a}^{b} f(x) dx = f(c) (b - a) w$	here
			s some point in [a, b].			5
	(b)	Let	the function f be defined as	$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 1 & \text{if } x > 0 \end{cases}$	l , x is rational Show that f is -1, x is irrational	not
			ntegrable on $[0, 1]$. But $ f \in R$			5
WP	Z—82	79		2	(C	ontd.)

UNIT-II

4. (a) Prove that
$$\int_{a+}^{b} \frac{1}{(x-a)^p} dx$$
 converges if $p < 1$ and diverges if $p \ge 1$.

(b) Test the convergence of
$$\int_{2}^{\infty} \frac{1}{\sqrt{x^2 - 1}} dx$$
.

(c) Show that
$$\int_{1}^{\infty} \frac{e^{-x}}{x} dx$$
 is convergent.

5. (a) Prove that:

$$\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx = \int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} dx.$$

(b) Evaluate:

$$\int_{0}^{\infty} \sqrt{x} e^{-\sqrt[3]{x}} dx.$$

(c) Prove that:

$$\int_{0}^{\infty} e^{-kx} x^{n-1} dx = \boxed{n/k^{n}}.$$

UNIT—III

- 6. (a) Prove that if f(z) = u(x, y) + iv(x, y) is analytic function in region D, then $u_x = v_y$ and $u_y = -v_x$ in D.
 - (b) Prove that $u = y^3 3x^2y$ is a harmonic function. Find its conjugate and the corresponding analytic function f(z) in terms of z.
- (a) If the function f(z) = u + iv is analytic in the domain D, then prove that family of curves u(x, y) = c₁ and v(x, y) = c₂ form an orthogonal system, where c₁ and c₂ are constants.
 - (b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, although C-R equations are satisfied at origin.

UNIT-IV

- 8. (a) Prove that cross-ratio remains invariant under a bilinear transformation. 5
 - (b) Let D be a region in z-plane is bounded by x = 0, y = 0, x = 2 and y = 1. Find the region in w-plane into which D is mapped under the transformation w = z + (1 2i).

- 9. (a) Prove that every bilinear transformation with two non-infinite fixed points p, q can be put in the normal form $\frac{w-p}{w-q} = k \left(\frac{z-p}{z-q} \right)$ where k is constant.
 - (b) Find the fixed points of the transformation $w = \frac{z-1}{z+1}$; state whether it is elliptic, hyperbolic or Loxodromic. Find also its normal form.

UNIT-V

- 10. (a) If p is a limit point of a set A, then prove that every neighbourhood of p contains infinitely many points of A.
 - (b) Show that $d(x, y) = |x y|, \forall x, y \in R$ defines a metric on R.
 - (c) Define:
 - (i) Open set
 - (ii) Closed set.
- 11. (a) Define a Cauchy sequence in a metric space and prove that every convergent sequence in a metric space is a Cauchy sequence.
 - (b) Prove that for any finite collection A_1 ,, A_n of open sets $\bigcap_{i=1}^n A_i$ is open set. 4
 - (c) Define a metric d on a space X.

B.Sc. (Part-III) Semester-V Examination

MATHEMATICS (NEW)

(Mathematical Methods)

Paper—X

				-		
Time: T	hree	Hours]				[Maximum Marks : 60
Note: - Question No. 1 is compulsory and attempt it once and solve ONE question from					ONE question from	
		n unit.	.parsor, arra	and and and		1
1. Cho	ose (correct alternative	(1 mark each	n):		10
(1)	The	value of $P'_n(1)$ is	;			
	(a)	n		(b)	n + 1	
	(c)	n(n + 1)		(d)	$\frac{1}{2}n(n+1)$	
(2)	If P	$_{n}(x) = x$, then the	value of n is	i :		
	(a)	0		(b)	-1	
	(c)	1		(d)	None	
(3)	The	value of $[J_{1/2}(x)]$	$^{2} + [J_{-1/2}(x)]^{2}$	is:		
	(a)	$\frac{2}{\pi x}$	•	(b)	$\frac{\pi x}{2}$	
	(c)	$\frac{\pi}{2}$		(d)	Zero	
(4)	Eacl	h eigen function y	(x) correspo	onding to the	he eigen values	λ_{n} (n = 1, 2,) has
	exac	etly zeros	in (a, b).			
	(a)	n-1		(b)	n	
	(c)	n + 1		(d)	One	
UNW—27	447(R	e)		1		(Contd.)

- (5) The function cos x has period:
 - (a) 2π

(b) π

(c) $\frac{\pi}{2}$

- (d) None
- (6) If the Fourier series correspond to an odd function f(x) in [-L, L], then its expansion contains only:
 - (a) constant terms

(b) cosine terms

(c) sine terms

- (d) All above
- (7) If $L[f(t)] = \frac{3}{s^2 + 9}$ for s > 0, then f(t) is:
 - (a) sin t

(b) sin 2t

(c) sin 3t

- (d) None
- (8) The inverse Laplace transform of $\frac{1}{s^2 + a^2}$ is:
 - (a) sin at

(b) $\frac{1}{a} \sin at$

(c) $\frac{1}{a} \sin t$

- (d) sin t
- (9) Shifting property of the Fourier transform is :
 - (a) $F[f(x a)] = F(\lambda)$
- (b) $F[f(x-a)] = F\left(\frac{\lambda}{a}\right)$
- (c) $F[f(x-a)] = e^{\lambda a} F(a)$

- (d) $F[f(x a)] = e^{-i\lambda a} \cdot F(\lambda)$
- (10) The Fourier transform of f(x). cos ax is:
 - (a) $F(\lambda + a) + F(\lambda a)$

- (b) $\frac{1}{2} [F(\lambda + a) + F(\lambda a)]$
- (c) $\frac{1}{2} [F(\lambda + a) F(\lambda a)]$
- (d) None

UNIT-I

2. (a) Prove that:

$$\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1} \text{ if } m = n.$$

- (b) Use Rodrigues formula to find $P_n(x)$, n = 0, 1, 2, 3, 4.
- 3. (p) Prove that:

$$(2n + 1) xP_n = (n + 1)P_{n+1} + nP_{n-1}.$$

(q) Prove that:

$$\int_{-1}^{1} (x^2 - 1) P'_n P_{n+1} dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$$

UNIT-II

4. (a) Prove that:

$$\frac{d}{dx}[J_p(x)] = \frac{1}{2}[J_{p-1}(x) - J_{p+1}(x)].$$

(b) Prove that:

$$xJ'_{p} = -pJ_{p} + xJ_{p-1}.$$
 5

- 5. (p) Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.
 - (q) Prove that the eigen values of SL problem are real.

UNIT-III

6. (a) Obtain the Fourier series for f(x) = |x| in $(-\pi, \pi)$. Hence show that :

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 5

- (b) Expand $f(x) = 2x x^2$ in the range (0, 3) as a Fourier series with period 3.
- 7. (p) Obtain the Fourier cosine series for $f(x) = x^2$ in 0 < x < 2.
 - (q) Obtain the Fourier series for $f(x) = \cos \frac{x}{2}$ in $-\pi \le x \le \pi$.

UNW—27447(Re) 3 (Contd.)

UNIT-IV

8. (a) Find:

 $L[\cosh^4 t].$

- (b) Use the transformations of derivatives to find the Laplace transform of cos at. 3
- (c) If L[f(t)] = F(s), then prove that $L\left[\frac{f(t)}{t}\right] = \int_{S}^{\infty} F(s) \, ds$, provided the integral exists. 4
- 9. (p) Find the inverse Laplace transform of $\frac{s}{s^4 a^4}$.
 - (q) Find the inverse Laplace transform of $\frac{1}{(s-2)(s+2)^2}$ by convolution theorem. 3
 - (r) Use Laplace transform to solve the equation :

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 3te^{-t}, \ y(0) = 4, \ y'(0) = 2.$$

UNIT-V

- 10. (a) Find the finite Fourier sine and cosine transforms of $f(x) = x^2$, 0 < x < l.
 - (b) Find the Fourier sine and cosine transforms of x^{n-1} , n > 0.
- 11. (p) Find Fourier sine transform of $f(x) = e^{-|x|}$, $x \ge 0$. Hence show that :

$$\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0.$$

(q) Show that finite Fourier sine and cosine transforms and their inverses are all Linear transformations.
5

B.Sc. Part—III (Semester—V) Examination 5S: MATHEMATICS (New) (Mathematical Methods)

Paper-X

Time: Three Hours] [Maximum Marks: 60

Note: — Question No. 1 is compulsory and attempt it once and solve one question from each unit.

			from each unit.			
1.	Cho	ose	the correct alternative (1 mark each):			
	(i)	If P	$P_n(x) = (-1)^n$, then what is the value of x?	,		e
		(a)	1	(b)	-1	
		(c)	0	(d)	None	
	(ii)	All	roots of $P_n(x) = 0$ are :			
		(a)	Distinct	(b)	Equal	
		(c)	Complex	(d)	None	
	(iii)	Wh	at is the value of $J_{-1/2}\left(\frac{\pi}{2}\right)$?			
		(a)	-1	(b)	1	
		(c)	0	(d)	π	
	(iv)	lues are:				
		(a)	Linearly dependent	(b)	Linearly independent	
		(c)	Real	(d)	None	
	(v)	The	fundamental period of tan x is:			
		(a)	π	(b)	2π	
		(c)	$\frac{\pi}{2}$	(d)	None	
	(vi)	Fou	rier series are associated with:			

- (a) Algebraic functions
- (b) Special functions
- (c) Periodic functions defined on some interval I
- (d) Linear functions

VOX-35306

(a)	1		(b)	t	902
(c)	e ^t		(d)	e ^{at}	
(viii) The	Laplace transform of	f cost is:			
(a)	$\frac{1}{s^2+1}$	A	(b)	$\frac{s}{s^2+1}$	
(c)	$\frac{1}{s^2 - 1}$		(d)	$\frac{s}{s^2-1}$	
(ix) If F	$F[f(x)] = F(\lambda)$, then the	Fourier transform of	of f(ax	κ) is :	
(a)	$F\left(\frac{\lambda}{a}\right)$	s	(b)	$\frac{1}{ a } F\left(\frac{\lambda}{a}\right), a = 0$	
(c)	$\frac{1}{ a } F(\lambda), a \neq 0$		(d)	$\frac{1}{ a } F\left(\frac{\lambda}{a}\right), a \neq 0$	

(x) The Fourier transform of convolution of f(x) and g(x) for $-\infty < x < \infty$ is :

(a)
$$F[f * g] = F[f(x)] \cdot F[g(x)]$$

(vii) The inverse Laplace transform of $\frac{1}{s-a}$ is:

(b)
$$F[f * g] = F[f(x)] + F[g(x)]$$

(c)
$$F[f * g] = F[f(x)] - F[g(x)]$$

(d)
$$F[f * g] = F[f(x)] / F[g(x)]$$
 10

UNIT-I

2. (a) Find $P_3(x)$ by Rodrigues formula and show that $\int_{-1}^{1} x^3 P_3(x) dx = \frac{4}{35}$. 2+3

(b) Show that
$$\int_{-1}^{1} [P'_n(x)]^2 dx = n(n+1)$$
.

3. (p) Prove that $nP_n = xP'_n - P'_{n-1}$, where $P'_n = \frac{dP_n}{dx}$.

(q) Show that
$$\int_{-1}^{1} x^{m} P_{n}(x) dx = 0$$
 if $m < n$.

UNIT-II

4. (a) Prove that
$$xJ'_{p} = -pJ_{p} + xJ_{p-1}$$
.

(b) Prove that
$$\frac{d}{dx} \left[x^p J_p(x) \right] = x^p J_{p-1}(x)$$
.

5. (p) Prove that
$$J_p(-x) = (-1)^p J_p(x)$$
, if p is an integer.

UNIT—III

6. (a) Obtain the Fourier series for
$$f(x) = x \cos x$$
 in $[-\pi, \pi]$.

(b) Obtain the Fourier sine series for
$$f(x) = x^2$$
 in $0 < x < 2$.

7. (p) Express the function $f(x) = \pi x - x^2$ as Fourier sine series in $0 \le x \le \pi$. Deduce that :

$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{\pi^3}{32}.$$

(q) Express
$$f(x) = x$$
 as a half range sine series in $0 < x < 2$.

UNIT-IV

- 8. (a) Find L[tⁿ], where n is a positive integer.
 - (b) Using transformations of derivatives find L[t sin at].

(c) Find the Laplace transform of
$$\int_{0}^{t} \frac{e^{t} \sin t}{t} dt$$
.

9. (p) Find
$$L^{-1} \left[\frac{s^2 - 3s + 4}{s^3} \right]$$
.

- (q) Find the inverse Laplace transform of $\frac{1}{s(s^2 + 4)}$ by the convolution theorem.
- (r) Use Laplace transform to find the solution of the equation:

$$\frac{d^2x}{dt^2} + 9x = \cos 2t, \ x(0) = 1, \ x\left(\frac{\pi}{2}\right) = -1.$$

5

UNIT-V

- 10. (a) Find the finite Fourier sine and cosine transforms of $f(x) = e^{ax}$ in $(0, \ell)$.
 - (b) Find $F[e^{-|x|}]$ and hence show that :

$$F\left[e^{-|2x|}\right] = \frac{4}{4+\lambda^2}.$$

- 11. (p) Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$, a > 0. Hence evaluate $\int_{0}^{\infty} tan^{-1} \frac{x}{a} \cdot \sin x \ dx$.
 - (q) Find the Fourier sine and cosine transforms of $f(x) = x^n e^{-ax}$, n > 0.

B.Sc. (Part—III) Semester—V Examination 5S: MATHEMATICS (New)

(Mathematical Methods)

Paper-X

Time : Three Hours]		[Maximum Marks: 60
Note :- Question No. 1 is comp	oulsory and attempt it once and solve	ONE question from
each unit.		
	20 (00)	

			each unit.		100
1.	Cho	ose	the correct alternative (1 mark each):		
	(i)	If p	$g_n(x) = 1$, then what is the value of n?		
		(a)	1	(b)	-1
		(c)	0	(d)	None
	(ii)	The	e integral $\int_{-1}^{1} p_n(x) \cdot p_m(x) dx \neq 0 \text{ if } :$		
		(a)	$m \le n$	(b)	m > n
		(c)	$m \neq n$	(d)	$\mathbf{m} = \mathbf{n}$
	(iii)	Wh	at is the value of $J_{1/2}\left(\frac{\pi}{2}\right)$?		
		(a)	0	(b)	1
	, ,	(c)	π	(d)	$\frac{\pi}{2}$
	(iv)	The	eigen values of Strum-Liouville proble	m are	:
		(a)	Real	(b)	Complex
		(c)	Equal	(d)	None
	(v)	Eve	ery Fourier series is a:		
		(a)	Trigonometric series	(b)	Power series
		(c)	Exponential series	(d)	None
	(vi)	The	fundamental period of sin x is:		
		(a)	π	(b)	2π
		(c)	$\frac{\pi}{2}$	(d)	None

(vii) If $L[f(t)] = \frac{1}{s^2}$, (s > 0), then f(t) is:

(a) tⁿ

(b) t²

(c) 1

(d) t

(viii) Every bounded function is of exponential order:

(a) 1

(b) -1

(c) 0

(d) 2

	(ix)	If $F[f(x)] = F(\lambda)$, then Fourier transform of $f(x - a)$ is:
		(a) $e^{\lambda a} \cdot F(\lambda)$ (b) $e^{i\lambda a} \cdot F(\lambda)$
		(c) $e^{-i\lambda a} \cdot F(\lambda)$ (d) None
	(x)	The Fourier transform of e x is:
		2
		(a) $\frac{2}{1+\lambda^2}$ (b) $\frac{1}{1+\lambda^2}$
		2
		(c) $\frac{2}{1-\lambda^2}$ (d) $\frac{1}{1-\lambda^2}$
		UNIT—I
2.	(a)	Show that $p_n(1) = 1$ and $p_n(-x) = (-1)^n p_n(x)$. Hence or otherwise deduce that $p_n(-1) = (-1)^n$.
	(b)	Prove that $(2n + 1)x p_n = (n + 1)p_{n+1} + n p_{n-1}$.
3.	(p)	Prove that:
		(i) $\int_{0}^{1} p_n(x) dx = 0, n \neq 0$
		-i
		(ii) $\int_{0}^{1} p_0(x) dx = 2$.
		(ii) $\int_{-1}^{1} p_0(x) dx = 2$.
	(q)	Show that $\int_{-1}^{1} p_{m}(x) \cdot p_{n}(x) dx = 0 \text{ if } m \neq n.$
		UNIT—II
4.	(a)	Prove that $xJ'_p = pJ_p - xJ_{p+1}$.
	(b)	Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.
5.	(p)	Prove that $J_p(x) = (-1)^p J_p(x)$, if p is a positive integer.
	(q)	Find all the eigen values and eigen functions of the SL problem $y'' + \lambda^2 y = 0$, $y'(0) = y'(\ell) = 0$,
		$0 \le x \le \ell . $
		UNIT—III
6.	(a)	Obtain the Fourier series for $f(x) = x^2$ in $[-\pi, \pi]$. Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
		5
	(b)	Find the Fourier series for the function $f(x)$ defined in $-\pi < x < \pi$ as :
		$[-\mathbf{x} \pi < \mathbf{x} < 0]$
		$f(x) = \begin{cases} -x & , -\pi < x < 0 \\ x & , 0 < x < \pi \end{cases}$
		Deduce that:
		$1 1 1 \pi^2$
		$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$

7. (p) Obtain the Fourier series for $\sqrt{1-\cos x}$ in $(0, 2\pi)$. Hence deduce that $\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{(4n^2-1)}$.

5

(q) Obtain the cosine half range series for the function f(x) = x in 0 < x < 2.

5

UNIT-IV

- 8. (a) If L[f(t)] = F(s), then prove that $L[e^{at}f(t)] = F(s-a)$.
 - (b) Find the Laplace transform of t² sin at.
 - (c) Evaluate $\int_{0}^{\infty} \frac{\cos 6t \cos 4t}{t} dt$.
- 9. (p) Find the inverse Laplace transform of $\frac{6s-4}{s^2-4s+20}$.
 - (q) Verify the convolution theorem for $f_1(t) = t$, $f_2(t) = \cosh t$.
 - (r) Using Laplace transform method, solve the equation:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 3te^{-t}, y(0) = 4, y'(0) = 2.$$

UNIT-V

10. (a) Find the finite Fourier sine and cosine transforms of mx, $0 < x < \ell$.

- (b) Show that Fourier cosine transform of $f(x) = e^{-x^2}$ is $\frac{1}{\sqrt{2}}e^{-\lambda^2/4}$.
- 11. (p) Find the Fourier sine and cosine transforms of x^{n-1} , n > 0.
 - (q) Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in $(0, \pi)$.

.