B.Sc. (Part-III) Semester-V Examination MATHEMATICS (New)
 (Mathematical Analysis)
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60
N.B. :-(1) Question No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :
(i) Let $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ be Riemann integrable. Which of the following is always true :
(a) f is continuous
(b) f is monotone
(c) f has only finite number of discontinuities
(d) the set of discontinuties of f may be infinite?
(ii) An improper integral $\int_{a}^{\infty} \frac{d x}{x^{p}}, a \in R$ is convergent if :
(a) $\mathrm{p}<1$
(b) $\mathrm{p}>1$
(c) $\mathrm{p} \geq 1$
(d) $\mathrm{p}=1$

1
(iii) $\beta(\mathrm{m}, \mathrm{n})$ is:
(a) $\sqrt{\mathrm{m}} / \sqrt{\mathrm{n}}$
(b) $\frac{\sqrt{(\mathrm{m}+\mathrm{n})}}{\sqrt{\mathrm{m}} / \mathrm{n}}$
(c) $\frac{\sqrt{\mathrm{m}} \sqrt{\mathrm{n}}}{\sqrt{(\mathrm{m}+\mathrm{n})}}$
(d) $\frac{\sqrt{\mathrm{m}} \sqrt{\mathrm{n}}}{\sqrt{(\mathrm{m}-\mathrm{n})}}$
(iv) In the real line R, which of the following is true?
(a) Every bounded sequence converges
(b) Every sequence converges
(c) Every Cauchy sequence converges
(d) None of the above
(v) Every neighbourhood is a/an :
(a) Closed set
(b) Open set
(c) Open closed set
(d) None of the above
(vi) A function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is harmonic in region D if :
(a) $u_{x x}-u_{y y}=0$
(b) $u_{x y}+u_{y x}=0$
(c) $u_{x y}-u_{y x}=0$
(d) $u_{x x}+u_{y y}=0$
(vii) The function $f(z)=\sqrt{|x y|}$ is \qquad at the origin.
(a) Harmonic function
(b) Analytic function
(c) Conjugate function
(d) Not analytic function
(viii) If $\mathrm{f}(\mathrm{z})$ and $\overline{\mathrm{f}(\mathrm{z})}$ are both analytic functions then $\mathrm{f}(\mathrm{z})$ is :
(a) Identically zero
(b) Constant
(c) Unbounded
(d) None of the above
(ix) The points z where $\left|\mathrm{e}^{\mathrm{z}}\right|=10$ form a:
(a) Circle
(b) Straight line
(c) Hyperbola
(d) Parabola
(x) A bilinear transformation with two non-infinite fixed points α and β having Normal form $\frac{w-\alpha}{w-\beta}=k\left(\frac{z-\alpha}{z-\beta}\right)$ is Elliptic if:
(a) $|\mathrm{k}| \neq 1, \mathrm{k}$ is real
(b) $\mathrm{k} \neq 1, \mathrm{k}$ is not real
(c) $|\mathrm{k}|=1$
(d) None of the above

UNIT-I

2. (a) Prove that every continuous function is integrable.
(b) Let the function f be defined as:

$$
\begin{aligned}
f(x)=1, & \\
=-1, & \text { when } x \text { is rational } x \text { is irrational }
\end{aligned}
$$

Show that f is not R -integrable over $[0,1]$ but $|\mathrm{f}| \in \mathrm{R}[0,1]$.
(c) Show that any constant function defined on a bounded closed inte $:$ val is integrable. 3
3. (p) If f is a bounded and integrable function over $[\mathrm{a}, \mathrm{b}]$ and M, m are bounds of f over $[\mathrm{a}, \mathrm{b}]$, prove that :

$$
\begin{equation*}
\mathrm{m}(\mathrm{~b}-\mathrm{a}) \leq \int_{a}^{b} \mathrm{f}(\mathrm{x}) \mathrm{dx} \leq \mathrm{M}(\mathrm{~b}-\mathrm{a}) \tag{4}
\end{equation*}
$$

(q) Prove that $\frac{2}{17}<\int_{-1}^{2} \frac{x}{1+x^{4}} d x<1 / 2$.
(r) If f is continuous and non-negative on $[a, b]$, then show that $\int_{a}^{b} f(x) d x \geq 0$.
4. (a) Prove that the integral $\int_{a^{+}}^{b} \frac{d x}{(x-a)^{p}}$ converges if $\mathrm{p}<1$ and diverges if $\mathrm{p} \geq 1$.
(b) Show that $\int_{1}^{\infty} \frac{\sin x}{x^{2}} d x$ converges absolutely.
(c) Show that $\int_{0}^{\infty} e^{-x^{2}} d x$ converges.
5. (p) Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{\mathrm{m} / \mathrm{n}}}{\sqrt{\mathrm{m}+\mathrm{n}}}$.
(q) Prove that $\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{4} \theta d \theta=\frac{\pi}{32}$.
(r) Prove that $\overline{(n+1)}=n \sqrt{(n)}$.

UNIT-III

6. (a) If $f(z)=u(x, y)+i v(x, y)$ be analytic in a region D, then prove that $u(x, y)$ and $v(x, y)$ satisfy Cauchy-Riemann equations.
(b) If $f(z)$ and $f(\bar{z})$ are analytic functions, prove that $f(z)$ is constant.
(c) Show that $u=2 x-x^{3}+3 x y^{2}$ is harmonic and find its harmonic conjugate function. Hence find $f(z)=u+i v$.
7. (p) If u and v are harmonic in region R, prove that $\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right)+i\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)$ is analytic in R .
(q) If the function $\mathrm{f}(\mathrm{z})=\mathrm{u}+$ iv be analytic in domain D then prove that, the family of curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$ form an orthogonal system, where c_{1} and c_{2} are arbitrary constants.
(r) Determine a, b, c, d so that the function $f(z)=\left(x^{2}+a x y+b y^{2}\right)+i\left(c x^{2}+d x y+y^{2}\right)$ is analytic.

UNIT-IV

8. (a) Prove that, every bilinear transformation with two non infinite fixed points α, β is of the form $\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}$, when k is constant.
(b) Under the transformation $w=\sqrt{2} e^{i \pi / 4} z$, find the image of the rectangle bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2$ and $\mathrm{y}=3$.
9. (p) Prove that the cross ratio remains invariant under a bilinear transformation.
(q) Prove that under the transformation $\mathrm{w}=\frac{\mathrm{z}-\mathrm{i}}{\mathrm{iz}-1}$ the region $\mathrm{I}_{\mathrm{in}}(\mathrm{z}) \geq 0$ is mapped into the region $|w| \leq 1$.

UNIT-V

10. (a) Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}-\mathrm{y}|, \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$ defines a metric on R .
(b) Define :
(i) Limit point
(ii) Boundary point.
(c) Prove that every neighbourhood is an open set.
11. (p) Define:
(i) Complete metric space
(ii) Open set.
(q) Prove that every convergent sequence in a metric space is a Cauchy sequence.
(r) Let X be a metric space. If $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are sequences in X such that $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}$ then, prove that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y})$.

B.Sc. (Part-III) Semester-V Examination
 5S : MATHEMATICS (New)
 (Mathematical Methods)
 Paper-X

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once.
(2) Solve ONE question from each Unit.

1. Choose the correct alternative (1 mark each) :
(i) If $p_{n}(x)$ is the solution of Legendre's D.E., then $p_{n}(-1)$ is :
(a) -1
(b) 1
(c) $(-1)^{\mathrm{n}}$
(d) 0
(ii) The value of integral $\int_{-1}^{1} x^{2} p_{1}(x) d x$, where $p_{1}(x)$ is Legendre's polynomial of degree 1 , equals :
(a) $\frac{2}{3}$
(b) $\frac{4}{35}$
(c) $\frac{4}{15}$
(d) 0
(iii) The value of $\mathrm{J}_{1 / 2}(\mathrm{x})$ equals:
(a) $\sqrt{\frac{2}{n \pi}} \cos x$
(b) $\sqrt{\frac{2}{n \pi}} \sin x$
(c) $\sqrt{\frac{n \pi}{2}} \cos x$
(d) $\sqrt{\frac{n \pi}{2}} \sin x$
(iv) Eigen functions corresponding to different Eigen values are :
(a) Linearly dependent
(b) Linearly independent
(c) Real
(d) None
(v) The coefficient in a half range sine series for the function $f(x)=\sin x$ defined on $[0, \ell]$ is given by :
(a) $\int_{0}^{\ell} \sin \mathrm{x} \cos \frac{\mathrm{n} \pi \mathrm{x}}{\ell} \mathrm{dx}$
(b) $\int_{0}^{\ell} \cos x \cos \frac{n \pi x}{\ell} d x$
(c) $\frac{2}{\ell} \int_{0}^{\ell} \sin \mathrm{x} \sin \frac{\mathrm{n} \pi \mathrm{x}}{\ell} \mathrm{dx}$
(d) $\frac{2}{\ell} \int_{0}^{\ell} \sin \mathrm{x} \sin \frac{\mathrm{n} \pi \mathrm{x}}{\ell} \mathrm{dx}$
(vi) The function $f(x)=(-\sin x)^{3}$ is :
(a) Odd
(b) Even
(c) Even and Odd
(d) None of these
(vii) If $L[f(t)]=F(s)$, then $L[f(a t)]$ is :
(a) $\mathrm{F}(\mathrm{s}-\mathrm{a})$
(b) $\frac{1}{\mathrm{a}} \mathrm{F}\left(\frac{\mathrm{s}}{\mathrm{a}}\right)$
(c) $\mathrm{F}\left(\frac{\mathrm{s}}{\mathrm{a}}\right)$
(d) $a F\left(\frac{s}{a}\right)$
(viii) The value of $L^{-1}\left[\frac{1}{s-a}\right]$ is :
(a) 1
(b) t
(c) e^{t}
(d) $\mathrm{e}^{\text {at }}$
(ix) The Fourier sine transform of $f(x)=e^{|-x|}, x \geq 0$ is:
(a) $\frac{\lambda}{1+\lambda^{2}}$
(b) $\frac{\lambda}{1-\lambda^{2}}$
(c) $\frac{2 \lambda}{1-\lambda^{2}}$
(d) $\frac{1}{1+\lambda^{2}}$
(x) If $\mathrm{F}[f(\mathrm{x})]=\mathrm{F}(\lambda)$, then the Fourier transform of $\mathrm{f}(\mathrm{ax})$ is :
(a) $\mathrm{F}\left(\frac{\lambda}{\mathrm{a}}\right)$
(b) $\frac{1}{|\mathrm{a}|} \mathrm{F}\left(\frac{\lambda}{\mathrm{a}}\right), \mathrm{a}=0$
(c) $\frac{1}{|a|} \mathrm{F}(\lambda) \quad a \neq 0$
(d) $\frac{1}{|a|} \mathrm{F}\left(\frac{\lambda}{\mathrm{a}}\right) \quad \mathrm{a} \neq 0$

UNIT-I

2. (a) Show that $p_{n}(x)$ is the coefficient of h^{n} in the ascending po ver series expansion of $\left(1-2 x h+h^{2}\right)^{-1 / 2}$.
(b) Prove that $n p_{n}=x p_{n}^{1}-p_{n-1}^{1}$.
(c) Prove that $x^{2}=\frac{1}{3} p_{0}(x)+\frac{2}{3} p_{2}(x)$.
3. (p) Prove that $\int_{-1}^{1}\left[p_{x}(x)\right]^{2} d x=\frac{2}{2 n+1}$.
(q) Prove that $p_{x}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.

UNIT-II

4. (a) Prove that $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$.
(b) Prove that $\mathrm{xJ}_{\mathrm{p}}^{1}=\mathrm{pJ}_{\mathrm{p}}-\mathrm{xJ}_{\mathrm{p}+1}$.
(c) Evaluate $\int_{a}^{b} J_{0}(x) \cdot J_{1}(x) d x$.
5. (p) Prove that Eigen values of the S-L problem are real.
(q) Prove that $\left(x^{p} \cdot J_{p}\right)^{\prime}=x^{p} J_{p-1}$
(r) Prove that $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.

UNIT-III

6. (a) If the trigonometric series $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges uniformly to $f(x)$ in $\mathrm{c} \leq \mathrm{x}<\mathrm{c}+2 \pi$, then find the Fourier coefficient of $\mathrm{f}(\mathrm{x})$.
(b) Obtain Fourier Series in $[0,2]$ for the function $f(x)=x^{2}$.
7. (p) Obtain Fourier Series in $[-\pi, \pi]$ for the function :

$$
\mathrm{f}(\mathrm{x})= \begin{cases}-\pi, & -\pi<\mathrm{x}<0 \tag{5}\\ \mathrm{x} & , 0<\mathrm{x}<\pi\end{cases}
$$

(q) Obtain Fourier cosine series in $[0, \pi]$ for the function $f(x)=\sin x$.

UNIT-IV

8. (a) Prove that $\mathrm{L}\left[\mathrm{t}^{\mathrm{n}} \cdot \mathrm{f}(\mathrm{t})\right]=(-1)^{\mathrm{n}} \frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{ds}^{\mathrm{n}}} \mathrm{F}(\mathrm{s}), \mathrm{n}=1,2,3 \ldots .$.
(b) Find $L[\sin t \cdot \cos 2 t \cdot \cos 3 t]$.
(c) Show that $\mathrm{L}\left(\mathrm{t}^{\mathrm{n}}\right)=\frac{\mathrm{n}!}{\mathrm{s}^{\mathrm{n}+1}}, \mathrm{~s}>0$.
9. (p) Solve the D.E. $y^{\prime \prime}+4 y^{\prime}=-8 t, y(0)=y^{\prime}(0)=0$.
(q) Find the inverse Laplace transform of $\frac{1}{(s-2)(s+2)^{2}}$ by using Convolution theorem.
(r) Prove that $L\left(u_{t 1}\right)=s^{2} L(u(x, t))-s u(x, 0)-u_{t}(x, 0)$.

UNIT--V
10. (a) Find the finite Fourier sine and cosine transform of $f(x)=\sin z x$ in $(0, \pi)$.
(b) Find the Fourier transform of the function:

$$
\mathrm{f}(\mathrm{x})= \begin{cases}1, & |\mathrm{x}|<1 \tag{4}\\ 0, & |\mathrm{x}|>1\end{cases}
$$

(c) Prove that $\int_{0}^{\ell} f^{\prime}(x) \sin \frac{n \pi x}{\ell} d x=-\frac{n \pi}{\ell} F_{c}(n)$.
11. (p) Find the Fourier sine and cosine transform of the function $f(x)=x^{n-1}, n>0$.
(q) Find finite Fourier cosine transform of u_{x} and u_{xx}; where $\mathrm{u}=\mathrm{u}(\mathrm{x}, \mathrm{t})$.

B.Sc. (Part-III) Semester-V Examination MATHEMATICS
 Paper-IX
 (Analysis)

Time : Three Hours]
[Maximum Marks : 60
N.B. :- (1) Question No. 1 is compulsory.
(2) Attempt ONE question from each unit.

1. Choose the correct alternatives :-
(i) $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges to :
(a) $\frac{1}{2}$
(b) 1
(c) 2
(d) 3
(ii) If f be a bounded function defined on $[a, b]$ and p be any partition of $[a, b]$ then $\mathrm{U}(\mathrm{p},-\mathrm{f})$ is :
(a) $\mathrm{L}(\mathrm{p}, \mathrm{f})$
(b) $\mathrm{U}(\mathrm{p}, \mathrm{f})$
(c) $-\mathrm{L}(\mathrm{p}, \mathrm{f})$
(d) $\quad-\mathrm{U}(\mathrm{p}, \mathrm{f})$
(iii) If $f(z)$ and $f(\bar{z})$ are both analytic, then $f(z)$ is :
(a) Unbounded
(b) Constant
(c) Identically zero
(d) None of these
(iv) A function $\mathrm{F}(\mathrm{x}, \mathrm{y})$ is harmonic in D if :
(a) $\mathrm{F}_{\mathrm{xx}}+\mathrm{F}_{\mathrm{yy}}=0$
(b) $\mathrm{F}_{\mathrm{xx}}-\mathrm{F}_{\mathrm{y} y}=0$
(c) $\mathrm{F}_{\mathrm{xy}}+\mathrm{F}_{\mathrm{yx}}=0$
(d) None of these
(v) If the transformation $w=\frac{2 z+3}{z-4}$ transforms the circle $x^{2}+y^{2}-4 x=0$ into S, then S is :
(a) A circle
(b) A straight line
(c) The region $\mathrm{R}_{\mathrm{e}}(\mathrm{w}) \geq 0$
(d) The region $\mathrm{R}_{\mathrm{e}}($ w $) \leq 0$
(vi) A Bilinear transformation with only one fixed point is:
(a) Loxodromic
(b) Elliptic
(c) Hyperbolic
(d) Parabolic
(vii) If $\left\{A_{\alpha}\right\}$ be a finite or infinite collection of sets A_{α} then $\left[\cup_{\alpha} A_{\alpha}\right]^{c}=$
(a) $\underset{\alpha}{\cap} \mathrm{A}_{\alpha}^{\mathrm{c}}$
(b) $\cup_{\alpha} \mathrm{A}_{\alpha}^{\mathrm{c}}$
(c) ${\underset{\alpha}{\alpha}}^{\sim} \mathrm{A}_{\alpha}$
(d) $\cup_{\alpha} \mathrm{A}_{\alpha}$
(viii) In the real line R , which of the following is true ?
(a) Every Cauchy sequence is convergent
(b) Every sequence is bounded
(c) Every sequence is convergent
(d) None of these
(ix) A metric space (X, d) is complete if :
(a) Every convergent sequence in X is a Cauchy sequence
(b) Every Cauchy sequence in X is convergent in X
(c) Every convergent sequence in X is not a Cauchy sequence
(d) None of these
(x) If B is closed and K is compact, then $B \cap K$ is :
(a) Bounded
(b) Closed
(c) Convergent
(d) Compact

UNIT-I

2. (a) If f be continuous and integrable on $[a, b]$ then prove that $\int_{a}^{b} f(x) d x=f(c)(b-a)$, where c is some point in $[a, b]$.
(b) If m and M are glb. and lub of $f(x)$ in $[a, b]$ then show that

$$
\begin{equation*}
\mathrm{m}(\mathrm{~b}-\mathrm{a}) \leq \mathrm{L}(\mathrm{p}, \mathrm{f}) \leq \mathrm{U}(\mathrm{p}, \mathrm{f}) \leq \mathrm{M}(\mathrm{~b}-\mathrm{a}) . \tag{3}
\end{equation*}
$$

(c) If f is bounded function defined on $[a, b]$ and p be any partition of $[a, b]$ then prove that :
(i) $\mathrm{U}(\mathrm{p},-\mathrm{f})=-\mathrm{L}(\mathrm{p}, \mathrm{f})$
(ii) $\mathrm{L}(\mathrm{p},-\mathrm{f})=-\mathrm{U}(\mathrm{p}, \mathrm{f})$.
3. (p) Show that :
(i) $\int_{0}^{\infty} e^{-r x} d x$ converges if $r>0$ and diverges if $r \leq 0$.
(ii) $\int_{\mathrm{a}}^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{p}}$ converges if $\mathrm{p}>1$ and diverges if $\mathrm{p} \leq 1$ and $\mathrm{a}>0$.
(q) Using limit test, show that integrals :
(i) $\int_{2}^{\infty} \frac{x}{1-x^{2}} d x=\infty$ and
(ii) $\int_{1}^{\infty} \frac{x d x}{3 x^{4}+5 x^{2}+1}$ coverges absolutely.

UNIT-II

4. (a) If $\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ be analytic in D and $\mathrm{z}=\mathrm{re}^{i \theta}$, where $\mathrm{u}, \mathrm{v}, \mathrm{r}, \theta$ are the real numbers then prove that $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$.
(b) Separate $\sin z$ into real and imaginary parts. Use Cauchy-Riemann conditions to show that : $\sin z$ is analytic. Prove that $\frac{d}{d z}(\sin z)=\cos z$.
5. (p) Find an analytic function $f(z)$ such that

$$
R_{e}\left\{f^{\prime}(z)\right\}=3 x^{2}-4 y-3 y^{2}
$$

and $f(1+i)=0$, using Milne-Thomson method.
(q) If $f(z)=u+$ iv be analytic in the region D, where u and v have continuous partial derivatives upto the second order, then prove that u and v both are harmonic functions.

UNIT-III

6. (a) Prove that every bilinear transformation with two non-infinite fixed points α, β is of the form $\frac{w-\alpha}{w-\beta}=K\left(\frac{z-\alpha}{z-\beta}\right)$, where K is a constant.
(b) Find the fixed points of the bilinear transformation $w=\frac{(2+i) z-2}{i+z}$, what is its normal form ? Show that the transformation is Loxodromic.
7. (p) Find the image of the rectangle bounded by $x=0, y=0, x=2$ and $y=3$ under the transformation $\mathrm{w}=\sqrt{2} \mathrm{e}^{\mathrm{i} \pi / 4} \cdot \mathrm{z}$
(q) Prove that the cross ratio remains invariant under a bilinear transformation.

UNIT-IV

8. (a) If X be a metric space with metric d then show that d_{i} defined by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$, is also a metric on x.
(b) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences in a metric space X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Then show that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
9. (p) Prove that the set A is open if and only if its complement is closed.
(q) Prove that the union of two nowhere dense sets in a metric space is nowhere dense.

UNIT-V

10. (a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
(b) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ such that

$$
f(x)=\left\{\begin{aligned}
x, & x \text { is irrational } \\
-x, & x \text { is rational }
\end{aligned}\right.
$$

Show that f is continuous only at $\mathrm{x}=0$.
11. (p) Let X, Y be metric spaces and $f: X \rightarrow Y$. Prove that f is continuous iff $f^{-1}\left(B^{\prime}\right) \subseteq\left[f^{-1}(B)\right]^{\prime}$ for every subset B of $Y, B^{\prime}=$ int B.
(q) If f be a continuous mapping of a connected metric space X into a metric space Y . Then prove that $f(x)$ is connected.

B.Sc. (Part-III) Semester-V Examination
 MATHEMATICS (NEW)
 Mathematical Analysis
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternatives:
(i) Consider $\mathrm{P}=(1,2,4)$ be a partition of interval $[1,4]$ then $\mu(\mathrm{P})$ is:
(a) 1
(b) 0
(c) 2
(d) 4
(ii) Let f be a bounded function defined on $[\mathrm{a}, \mathrm{b}]$ and p be any partition of $[\mathrm{a}, \mathrm{b}]$ then $\mathrm{L}(\mathrm{p},-\mathrm{f})$ is :
(a) $-\mathrm{U}(\mathrm{p}, \mathrm{f})$
(b) $-\mathrm{L}(\mathrm{p}, \mathrm{f})$
(c) $\mathrm{L}(\mathrm{p}, \mathrm{f})$
(d) $\mathrm{U}(\mathrm{p}, \mathrm{f})$
(iii) An integral $\int_{0}^{\infty} e^{-r x} d x$ is convergent if :
(a) $\mathrm{r}<0$
(b) $\mathrm{r}>0$
(c) $\mathrm{r}=0$
(d) None of these
(iv) The value of $\sqrt{1 / 2}$ is :
(a) $1 / 2$
(b) 1
(c) $\sqrt{\pi}$
(d) π
(v) If $f(z)=(x+a y)+i(b x+y)$ is analytic then :
(a) $\mathrm{a}=\mathrm{b}$
(b) $\mathrm{a}+\mathrm{b}=0$
(c) $\mathrm{a}=1, \mathrm{~b}=0$
(d) $a>b$
(vi) Let $f(z)=u+i v$ be analytic function and $z=r e^{i \theta}$ then $C-R$ equations are :
(a) $\mathrm{u}_{\mathrm{r}}=\mathrm{v}_{\theta}, \mathrm{u}_{\theta}=-\mathrm{v}_{\mathrm{r}}$
(b) $u_{r}=r v_{\theta}, u_{0}=-\frac{1}{r} v_{r}$
(c) $\mathrm{u}_{\mathrm{r}}=\frac{1}{\mathrm{r}} \mathrm{v}_{\theta}, \mathrm{v}_{\mathrm{r}}=-\frac{1}{\mathrm{r}} \mathrm{u}_{\theta}$
(d) $u_{r}=v_{\theta}, u_{\theta}=v_{r}$
(vii) A Mobius transformation which is not identity can have the following number of fixed points :
(a) 5
(b) 4
(c) 3
(d) 2
(viii) A bilinear transformation with two non-infinite fixed points p and q have normal form $\frac{w-p}{w-q}=k\left(\frac{z-p}{z-q}\right)$ then BT is elliptic transformation if :
(a) $|\mathrm{k}|=1$
(b) $|\mathrm{k}| \neq 1$
(c) $|\mathrm{k}|=0$
(d) $|\mathrm{k}|=2$
(ix) For any finite collection $A_{1}, A_{2}, \ldots . A_{n}$ of open sets $\bigcap_{\alpha=1}^{n} A_{\alpha}$ is :
(a) Closed
(b) Open
(c) Semi open
(d) None of these
(x) Every neighbourhood of a point is:
(a) Closed
(b) Finite
(c) Open
(d) ϕ

UNIT-I

2. (a) Let a bounded function f defined on [a,b] is integrable on [a, b] iff for each $\in>0$ there exist a partition P of $[a, b]$ such that $U(p, f)-L(p, f)<\epsilon$. Prove this.
(b) Let the function $f(x)$ be defined as $f(x)=\left\{\begin{array}{c}1, x \text { is rational } \\ -1, x \text { is irrational. }\end{array}\right.$ Show that f is not R-integrable over $[0,1]$, but $|f| \in R[0,1]$.
3. (a) If $f \in R[a, b]$, then prove that $F:[a, b] \rightarrow R$ defined by $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[\mathrm{a}, \mathrm{b}]$. If f is continuous at $\mathrm{x}_{\mathrm{o}} \in[\mathrm{a}, \mathrm{b}]$, then prove that F is differentiable at x_{o} with $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
(b) Prove that every continuous function is integrable.

UNIT-II

4. (a) Let $f(x), g(x) \in C, a \leq x<\infty$ and $0 \leq f(x) \leq g(x), \forall x \geq a$. Then prove that :
(i) $\int_{a}^{\infty} g(x) d x<\infty \Rightarrow \int_{a}^{\infty} f(x) d x<\infty$ and
(ii) $\int_{a}^{\infty} f(x) d x=\infty \Rightarrow \int_{a}^{\infty} g(x) d x=\infty$.
(b) Show that $\int_{2}^{\infty} \frac{x^{2}}{\sqrt{x^{7}+1}} d x$ is convergent.
(c) Show that $\int_{1}^{\infty} \frac{\sin x}{x^{2}} d x$ converges absolutely.
5. (a) Prove that:

$$
\begin{equation*}
\sqrt{1 / 2}=\sqrt{\pi} . \tag{4}
\end{equation*}
$$

(b) Evaluate :

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{8}\left(1-x^{6}\right)}{(1+x)^{24}} d x \tag{3}
\end{equation*}
$$

(c) Show that :

$$
\begin{equation*}
\beta(\mathrm{m}, \mathrm{n})=2 \int_{0}^{\pi / 2} \sin ^{2 \mathrm{~m}-1} \theta \cos ^{2 \mathrm{n}-1} \theta \mathrm{dx} \tag{3}
\end{equation*}
$$

UNIT-III

6. (a) Prove that a necessary condition that $f(z)=u+i v$ be analytic in a region D is that $\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$ and $\mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$.
(b) Show that the function $w=e^{z}$ is analytic function and find $\frac{d w}{d z}$.
(a) If the function $f(z)=u+i v$ is analytic in D then prove that families of curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ form an orthogonal system, where c_{1} and c_{2} are constants.
(b) If $f(z)$ and $f(\bar{z})$ are analytic functions then prove that $f(z)$ is constant. 3
(c) Show that $w=e^{\bar{z}}$ is not analytic function for any z. 3

UNIT--IV

8. (a) Prove that the bilinear transformation is a combination of translation, rotation, stretching an inversion transformation.
(b) Consider the transformation $\mathrm{w}=\mathrm{ze}^{\mathrm{i} / 4}$ and determine the region in the w -plane corresponding to the triangular region bounded by the lines $x=0, y=0$ and $x+y=1$ in the z-plane.

5

(a) Prove that cueny bithear transfour ation with single non-infinite fixed point α can be Tht in the normal form $\frac{1}{w-\alpha}=\frac{1}{z-\alpha}+k$, where k is constant.
(b) Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=0,1, \infty$.
UNIT-V
10. (a) Let the mapping $d: c[0,1] \times c[0,1] \rightarrow R$ be defined by $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$. Show that d is metric on $\mathrm{c}[0,1]$. 5
(b) Let X be a metric space. If $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ are sequences in X such that $\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $y_{n} \rightarrow y$, then show that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
11. (a) Define neighbourhood of a point in a metric space X and prove that every neighbourhood of a point is open set.
(b) Prove that every convergent sequence is Cauchy sequence and give an example of sequence which is Cauchy sequence but not convergent. 5

B.Sc. Part-III Semester-V Examination MATHEMATICS (NEW)
 (Mathematical Analysis)
 Paper-IX

Time : Three Hours]
[Maximum Marks : 60
N.B. :-(1) Question No. 1 is compulsory.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :-
(i) If $P_{1}=(1,2,4)$ and $P_{2}=(1,3,4)$ be two partitions of $[1,4]$ then common refinement of P_{1} and P_{2} is :
(a) $(1,2,4)$
(b) $(1,3,4)$
(c) $(1,4)$
(d) $(1,2,3,4)$
(ii) Let F be bounded function defined on [a, b] and P be any partition of $[\mathrm{a}, \mathrm{b}]$, if $\alpha<0$ is any real number then $U(P, \alpha f)$ is :
(a) $\alpha \mathrm{L}(\mathrm{P}, \mathrm{f})$
(b) $\alpha \mathrm{U}(\mathrm{P}, \mathrm{f})$
(c) $\mathrm{U}(\mathrm{P}, \mathrm{f})$
(d) None of these
(iii) An improper integral $\int_{a+}^{b} \frac{1}{(x-a)^{p}} d x$ is divergent if:
(a) $\mathrm{p} \geq 1$
(b) $\mathrm{p}<1$
(c) $\mathrm{p}=1 / 2$
(d) None of these
(iv) $\beta(\mathrm{m}, \mathrm{n})$ is :
(a) $\frac{\sqrt{m+n}}{\sqrt{m} / n}$
(b) $\frac{\sqrt{m} / n}{\sqrt{m+n}}$
(c) $\frac{\sqrt{m} / n}{\sqrt{m-n}}$
(d) \sqrt{m} / n
(v) A function $\mathrm{u}(\mathrm{x}, \mathrm{y})$ is harmonic in D if :
(a) $u_{x x}+u_{y y}=0$
(b) $\mathrm{u}_{\mathrm{xx}}-\mathrm{u}_{\mathrm{yy}}=0$
(c) $u_{x y}+u_{y x}=0$
(d) $\mathrm{u}_{\mathrm{xx}}-\mathrm{u}_{\mathrm{xy}}=0$
(vi) Let u, v be real valued function defined on \mathbb{R}^{2} and $f(z)=u+i v ; f(z)=u \quad i v$. If f is an analytic function and f is not constant, then :
(a) f is always analytic
(b) f may or may not be analytic
(c) f is never analytic
(d) $\mathrm{f}+\overline{\mathrm{f}}$ is analytic
(vii) A bilinear transformation $\mathrm{w}=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}}$, is conformal if :
(a) $\mathrm{ad}-\mathrm{bc}=0$
(b) a $\neq 0, b \neq 0$
(c) $\mathrm{ad}-\mathrm{bc} \neq 0$
(d) $\mathrm{c} \neq 0, \mathrm{~d} \neq 0$
(viii) A bilinear transformation with two non-infinite fixed points $\alpha \& \beta$ having Normal form $\frac{w-\alpha}{w-\beta}=K\left(\frac{z-\alpha}{z-\beta}\right)$ is Hyperbolic if :
(a) $|\mathrm{K}|=1$
(b) $|\mathrm{K}| \neq 1, \mathrm{~K}$ is real
(c) $|\mathrm{K}| \neq 1, \mathrm{~K}$ is not real
(d) None of these
(ix) Let (X, d) be metric space and $A \subset X, A$ is nonempty the diameter of A is $d(A)$ if A is unbounded then :
(a) $d(A)<\infty$
(b) $\mathrm{d}(\mathrm{A})=-\infty$
(c) $d(A)=\infty$
(d) $d(A)=1$
(x) Let A be a nonempty closed subset of metric space (X, d) then A^{C} is :
(a) open
(b) closed
(c) ϕ
(d) None of these.

UNIT--I
2. (a) Prove that if $f(x)$ is monotonic function in.[a, b] then it is integrable on $[a, b]$.
(b) If f, $g \in R[a, b]$ and $f(x) \leq g(x), \forall x \in[a, b]$, then prove that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
(c) Show that any constant function defined on [a, b] is integrable on $[a, b]$.
3. (a) If a function $F(x)$ is continuous on [a,b] and $F(x)$ is continuous and differentiable on $[a, b]$ with $F^{\prime}(x)=F(x), x \in[a, b]$, then prove that $\int_{a}^{b} F(x) d x=F(b)-F(a)$.
(b) Let $f(x)$ be a bounded function defined on $[a, b]$ with bounds m and M. Then prove that : $\mathrm{m}(\mathrm{b}-\mathrm{a}) \leq \mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{U}(\mathrm{P}, \mathrm{f}) \leq \mathrm{M}(\mathrm{b}-\mathrm{a})$ for any partition P of $[\mathrm{a}, \mathrm{b}]$.
(c) Define Darboux Upper and Lowers sums for bounded function $f(x)$ defined on [a, b] and find them for function $\mathrm{f}(\mathrm{x})$ with bounds $\mathrm{m}_{1}=1, \mathrm{~m}_{2}=2, \mathrm{~m}_{3}=3, \mathrm{~m}_{4}=4$ and $\mathrm{M}_{1}=2$, $M_{2}=3, M_{3}=4, M_{4}=5$ for the partition $P=\{1,3,4,5,6\}$ of $[1,6]$.

UNIT-II
4. (a) Prove that $\int_{\mathrm{a}}^{\infty} \frac{1}{\mathrm{x}^{\mathrm{p}}} \mathrm{dx}$ converges if $\mathrm{p}>1$ and diverges if $\mathrm{p} \leq 1$ and $\mathrm{a}>0$.
(b) Show that $\int_{2}^{\infty} \frac{\mathrm{x}^{3}}{\sqrt{\mathrm{x}^{7}+1}} \mathrm{dx}$ is divergent.
(c) Show that $\int_{2}^{\infty} \frac{\cos \mathrm{x}}{\sqrt{1+\mathrm{x}^{3}}} \mathrm{dx}$ is Absolutely convergent.
5. (a) Prove that $\beta(m, n)=\frac{\sqrt{m} / \sqrt{n}}{\sqrt{m+n}}$.
(b) Show that $\int_{0}^{1} \sqrt{x(1-x)} d x=\pi / 8$.
(c) Prove that $\sqrt{n}=\int_{0}^{1}\left(\log \frac{1}{x}\right)^{n-1} d x$.

UNIT-III

6. (a) If $f(z)=u(r, \theta)+i v(r, \theta)$ is analytic function in D, then prove that $u_{r}=\frac{1}{r} v_{\theta}$ and $v_{r}=-\frac{1}{r} u \theta$, CR equations in polar coordinates.
(b) Using Milne-Thomson method construct analytic function $f(z)$, whose real part is $e^{-x}(x \cos y+y \sin y)$.
7. (a) Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ be analytic in the region D , where u and v have continuous partial derivatives upto the second order. Then prove that u and v are harmonic functions.
(b) If $w=u+i v$ is analytic function in the region R, then prove that $\frac{\partial(u, v)}{\partial(x, y)}-\left|f^{1}(z)\right|^{2}$.
(c) If $w=u+i v$ is analytic function in D, then prove that $\frac{d w}{d z}=\frac{\partial w}{\partial x}$.

> UNIT-IV
8. (a) Prove that the cross-ratio remains invariant under bilinear transformation.
(b) Find the image of the rectangle bounded by $x=0, y=0, x=2$ and $y-3$ under the transformation $\mathrm{w}=\mathrm{e}^{\mathrm{i} / 4} \times \sqrt{2}$.
9. (a) Prove that every bilinear transformation with single non-infinite fixed point α can be put in the normal form $\frac{1}{w-\alpha}=\frac{1}{z-\alpha}+K$, where K is a constant.
(b) Find the bilinear transformation which maps the points $\mathrm{z}=1, \mathrm{i},-1$ into points $\mathrm{w}=\mathrm{i}, \mathrm{o},-\mathrm{i}$.

UNIT-V

10. (a) Let X be an arbitrary non-empty set. Define d by $d(x, y)=\left\{\begin{array}{ll}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{array}\right.$ show that ' d ' is metric on X .
(b) Let (X, d) be a metric space and $x, y, x^{\prime}, y^{\prime} \in X$. Show that

$$
\begin{equation*}
\left|d(x, y)-d\left(x^{\prime}, y^{\prime}\right)\right| \leq d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right) \tag{3}
\end{equation*}
$$

(c) Define :--
(i) Limit point
(ii) Interior point of a set A . 2
11. (a) Let Y be a subspace of a complete metric space X . Then prove that Y is complete $\Leftrightarrow \mathrm{Y}$ is closed.
(b) Prove that every neighborhood of a point is open set. 3
(c) Define :--
(i) Cauchy sequence
(ii) Complete metric space. 2

B.Sc. (Part-III) Semester-V Examination MATHEMATICS (NEW)
 Paper-IX
 (Mathematical Analysis)

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) Let $\mathrm{P}=(1,3,4,5,6)$ be a partition of $[1,6]$ and if $\mathrm{M}_{1}=2, \mathrm{M}_{2}=3, \mathrm{M}_{3}=4$, $M_{4}=5$ are lub's of F then $U(P, F)$ is :
(a) 11
(b) 10
(c) 12
(d) 16
(ii) Let f be a bounded function defined on [$\mathrm{a}, \mathrm{b}]$ and P be any partition of $[\mathrm{a}, \mathrm{b}], \mathrm{P}^{*}$ be refinement of P . Then $\mathrm{L}(\mathrm{P}, \mathrm{f})$ and $\mathrm{L}\left(\mathrm{P}^{*}, f\right)$ satisfy :
(a) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(b) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \geq \mathrm{U}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(c) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \geq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(d) None of these
(iii) An improper integral $\int_{-\infty}^{\infty} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$ converges to:
(a) $\sqrt{\mathrm{x}}$
(b) $-x$
(c) x
(d) 0
(iv) An integral $\int_{0}^{\infty} e^{-k x} x^{n-1} d x$ is :
(a) $\mathrm{k}^{\mathrm{n}} \sqrt{\mathrm{n}}$
(b) $\frac{\sqrt{n}}{k^{n}}$
(c) k^{n}
(d) \sqrt{n}
(v) If a function $f(z)=u(x, y)+i v(x, y)$ is Analytic in a region D, then :
(a) $\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{y}}$ and $\mathrm{u}_{\mathrm{y}}=\mathrm{v}_{\mathrm{x}}$
(b) $u_{x}=-u_{y}$ and $u_{y}=-v_{x}$
(c) $\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}}$ and $\mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$
(d) None of these
(vi) If $w=u+i v$ is analytic function in D, then $\frac{d w}{d z}$ is:
(a) $-\frac{\partial w}{\partial x}$
(b) $\frac{\partial w}{\partial y}$
(c) $-\frac{\partial w}{\partial y}$
(d) $\frac{\partial w}{\partial x}$
(vii) A Mobius transformation $\mathrm{w}=\mathrm{az}$, a is real number, is :
(a) Rotation transformation
(b) Magnification transformation
(c) Translation transformation
(d) None of these
(viii) A bilinear transformation with only one fixed point is :
(a) Loxodromic
(b) Parabolic
(c) Elliptic
(d) Hyperbolic
(ix) For any collection of $\left\{A_{\alpha}\right\}$ open sets, $\bigcup_{\alpha} A_{\alpha}$ is:
(a) Closed
(b) Open
(c) Semi-open
(d) None of these
(x$)$ A metric space (X, d) is complete if every Cauchy sequence in X is :
(a) Bounded
(b) Unbounded
(c) Convergent
(d) Divergent

UNIT--I

2. (a) Prove that a bounded function f defined on $[a, b]$ is integrable on $[a, b]$ iff for any $\epsilon>0$ there exist a $\delta>0$ such that for every partition P of $[\mathrm{a}, \mathrm{b}]$ with $\mu(\mathrm{P})<\delta$, $\mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{L}(\mathrm{P}, \mathrm{f})<\epsilon$.
(b) If f is function defined by $f(x)=x$ on $[0,2]$, then show that f is integrable in Riemann sense over $[0,2]$ and $\int_{0}^{2} f(x) d x=2$.
3. (a) Prove that if f is continuous and integrable on [a, b], then $\int_{a}^{b} f(x) d x=f(c)(b-a)$ where c is some point in $[\mathrm{a}, \mathrm{b}]$.
(b) Let the function f be defined as $f(x)=\left\{\begin{array}{l}1, x \text { is rational } \\ -1, x \text { is irrational }\end{array}\right.$. Show that f is not R-integrable on $[0,1]$. But $|f| \in R[0,1]$.
4. (a) Prove that $\int_{a+}^{b} \frac{1}{(x-a)^{p}} d x$ converges if $p<1$ and diverges if $p \geq 1$.
(b) Test the convergence of $\int_{2}^{\infty} \frac{1}{\sqrt{\mathrm{x}^{2}-1}} \mathrm{dx}$.
(c) Show that $\int_{1}^{\infty} \frac{e^{-x}}{x} d x$ is convergent.
5. (a) Prove that:

$$
\begin{equation*}
\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x \tag{4}
\end{equation*}
$$

(b) Evaluate :

$$
\begin{equation*}
\int_{0}^{\infty} \sqrt{x} e^{-\sqrt[3]{x}} d x \tag{3}
\end{equation*}
$$

(c) Prove that:

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{kx}} \mathrm{x}^{\mathrm{n}-1} \mathrm{dx}=\sqrt{\mathrm{n}} / \mathrm{k}^{\mathrm{n}} \tag{3}
\end{equation*}
$$

UNIT-III

6. (a) Prove that if $f(z)=u(x, y)+i v(x, y)$ is analytic function in region D, then $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ in D.
(b) Prove that $u=y^{3}-3 x^{2} y$ is a harmonic function. Find iis conjugate and the corresponding analytic function $f(z)$ in terms of z.
7. (a) If the function $f(z)=u+i v$ is analytic in the domain D, then prove that family of curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ form an orthogonal system, where c_{1} and c_{2} are constants.
(b) Show that the function $\mathrm{f}(\mathrm{z})=\sqrt{|\mathrm{xy}|}$ is not analytic at the origin, although C-R equations are satisfied at origin.

UNIT-IV

8. (a) Prove that cross-ratio remains invariant under a bilinear transformation.
(b) Let D be a region in z -plane is bounded by $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2$ and $\mathrm{y}=1$. Find the region in w-plane into which D is mapped under the transformation $w=z+(1-2 i)$.
9. (a) Prove that every bilinear transformation with two non-infinite fixed points p, q can be put in the normal form $\frac{w-p}{w-q}=k\left(\frac{z-p}{z-q}\right)$ where k is constant.
(b) Find the fixed points of the transformation $w=\frac{z-1}{z+1}$; state whether it is elliptic, hyperbolic or Loxodromic. Find also its normal form.

UNIT-V

10. (a) If p is a limit point of a set A, then prove that every neighbourhood of p contains infinitely many points of A.
(b) Show that $d(x, y)=|x-y|, \forall x, y \in R$ defines a metric on R.
(c) Define :
(i) Open set
(ii) Closed set.
11. (a) Define a Cauchy sequence in a metric space and prove that every convergent sequence in a metric space is a Cauchy sequence.
(b) Prove that for any finite collection $A_{1}, \ldots . ., A_{n}$ of open sets $\bigcap_{i=1}^{n} A_{i}$ is open set.
(c) Define a metric d on a space X .

B.Sc. (Part-III) Semester-V Examination
 MATHEMATICS (NEW)
 (Mathematical Methods)

Paper-X
Time : Three Hours]
[Maximum Marks : 60
Note :-Question No. 1 is compulsory and attempt it once and solve ONE question from each unit.

1. Choose correct alternative (1 mark each) :
(1) The value of $\mathrm{P}_{\mathrm{n}}^{\prime}(1)$ is :
(a) n
(b) $\mathrm{n}+1$
(c) $\mathrm{n}(\mathrm{n}+1)$
(d) $\frac{1}{2} n(n+1)$
(2) If $P_{n}(x)=x$, then the value of n is:
(a) 0
(b) -1
(c) 1
(d) None
(3) The value of $\left[\mathrm{J}_{1 / 2}(\mathrm{x})\right]^{2}+\left[\mathrm{J}_{-1 / 2}(\mathrm{x})\right]^{2}$ is :
(a) $\frac{2}{\pi \mathrm{X}}$
(b) $\frac{\pi x}{2}$
(c) $\frac{\pi}{2}$
(d) Zero
(4) Each eigen function $y_{n}(x)$ corresponding to the eigen values $\lambda_{n}(n=1,2, \ldots \ldots$.$) has$ exactly \qquad zeros in (a, b).
(a) $\mathrm{n}-1$
(b) n
(c) $\mathrm{n}+1$
(d) One
(5) The function $\cos x$ has period:
(a) 2π
(b) π
(c) $\frac{\pi}{2}$
(d) None
(6) If the Fourier series correspond to an odd function $f(x)$ in $[-L, L]$, then its expansion contains only :
(a) constant terms
(b) cosine terms
(c) sine terms
(d) All above
(7) If $L[f(t)]=\frac{3}{s^{2}+9}$ for $s>0$, then $f(t)$ is :
(a) $\sin t$
(b) $\sin 2 t$
(c) $\sin 3 t$
(d) None
(8) The inverse Laplace transform of $\frac{1}{\mathrm{~s}^{2}+\mathrm{a}^{2}}$ is:
(a) \sin at
(b) $\frac{1}{a} \sin a t$
(c) $\frac{1}{a} \sin t$
(d) $\sin t$
(9) Shifting property of the Fourier transform is :
(a) $F[f(x-a)]=F(\lambda)$
(b) $F[f(x-a)]=F\left(\frac{\lambda}{a}\right)$
(c) $\mathrm{F}[\mathrm{f}(\mathrm{x}-\mathrm{a})]=\mathrm{e}^{\lambda \mathrm{a}} \mathrm{F}(\mathrm{a})$
(d) $F[f(x-a)]=e^{-i \lambda a} \cdot F(\lambda)$
(10) The Fourier transform of $f(x) \cdot \cos a x$ is :
(a) $\mathrm{F}(\lambda+\mathrm{a})+\mathrm{F}(\lambda-\mathrm{a})$
(b) $\frac{1}{2}[\mathrm{~F}(\lambda+\mathrm{a})+\mathrm{F}(\lambda-\mathrm{a})]$
(c) $\frac{1}{2}[\mathrm{~F}(\lambda+\mathrm{a})-\mathrm{F}(\lambda-\mathrm{a})]$
(d) None

UNIT-I

2. (a) Prove that :

$$
\begin{equation*}
\int_{-1}^{1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1} \text { if } m=n \tag{5}
\end{equation*}
$$

(b) Use Rodrigues formula to find $\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{n}=0,1,2,3,4$.
3. (p) Prove that :

$$
(2 n+1) x P_{n}=(n+1) P_{n+1}+n P_{n-1} .
$$

(q) Prove that:

$$
\begin{equation*}
\int_{-1}^{1}\left(x^{2}-1\right) P_{n}^{\prime} P_{n+1} d x=\frac{2 n(n+1)}{(2 n+1)(2 n+3)} \tag{5}
\end{equation*}
$$

UNIT--II
4. (a) Prove that :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{~J}_{\mathrm{p}}(\mathrm{x})\right]=\frac{1}{2}\left[\mathrm{~J}_{\mathrm{p}-1}(\mathrm{x})-\mathrm{J}_{\mathrm{p}+1}(\mathrm{x})\right] \tag{5}
\end{equation*}
$$

(b) Prove that:

$$
\begin{equation*}
\mathrm{xJ}_{\mathrm{p}}^{\prime}=-\mathrm{pJ} \mathrm{~J}_{\mathrm{p}}+\mathrm{xJ} J_{\mathrm{p}-1} \tag{5}
\end{equation*}
$$

5. (p) Express $\mathrm{J}_{5}(\mathrm{x})$ in terms of $\mathrm{J}_{0}(\mathrm{x})$ and $\mathrm{J}_{1}(\mathrm{x})$. 5
(q) Prove that the eigen values of SL problem are real.

UNIT-III

6. (a) Obtain the Fourier series for $f(x)=|x|$ in $(-\pi, \pi)$. Hence show that:

$$
\begin{equation*}
\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots . \tag{5}
\end{equation*}
$$

(b) Expand $f(x)=2 x-x^{2}$ in the range $(0,3)$ as a Fourier series with period 3.
7. (p) Obtain the Fourier cosine series for $f(x)=x^{2}$ in $0<x<2$.
(q) Obtain the Fourier series for $f(x)=\cos \frac{x}{2}$ in $-\pi \leq x \leq \pi$.

UNIT-IV

8. (a) Find:
$\mathrm{L}\left[\cosh ^{4} \mathrm{t}\right] . \quad 3$
(b) Use the transformations of derivatives to find the Laplace transform of cos at. 3
(c) If $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{F}(\mathrm{s})$, then prove that $\mathrm{L}\left[\frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}}\right]=\int_{\mathrm{S}}^{\infty} \mathrm{F}(\mathrm{s}) \mathrm{ds}$, provided the integral exists. 4
9. (p) Find the inverse Laplace transform of $\frac{s}{s^{4}-a^{4}}$.

3
(q) Find the inverse Laplace transform of $\frac{1}{(s-2)(s+2)^{2}}$ by convolution theorem. 3
(r) Use Laplace transform to solve the equation :

$$
\begin{array}{r}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{y}=3 \mathrm{te}^{-\mathrm{t}}, \mathrm{y}(0)=4, \mathrm{y}^{\prime}(0)=2 \\
\text { UNIT-V }
\end{array}
$$

10. (a) Find the finite Fourier sine and cosine transforms of $f(x)=x^{2}, 0<x<1$.
(b) Find the Fourier sine and cosine transforms of $\mathrm{x}^{\mathrm{n-1}}, \mathrm{n}>0$.
11. (p) Find Fourier sine transform of $f(x)=e^{-|x|}, x \geq 0$. Hence show that:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathrm{x} \sin \mathrm{mx}}{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{2} \mathrm{e}^{-\mathrm{m}}, \mathrm{~m}>0 \tag{5}
\end{equation*}
$$

(q) Show that finite Fourier sine and cosine transforms and their inverses are all Linear transformations.

B.Sc. Part-III (Semester-V) Examination
 5S : MATHEMATICS (New)
 (Mathematical Methods)

Paper-X

Time : Three Hours]
[Maximum Marks : 60
Note :-Question No. 1 is compulsory and attempt it once and solve one question from each unit.

1. Choose the correct alternative ($\mathbf{1}$ mark each) :
(i) If $\mathrm{P}_{\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}}$, then what is the value of x ?
(a) 1
(b) -1
(c) 0
(d) None
(ii) All roots of $\mathrm{P}_{\mathrm{n}}(\mathrm{x})=0$ are :
(a) Distinct
(b) Equal
(c) Complex
(d) None
(iii) What is the value of $\mathrm{J}_{-1 / 2}\left(\frac{\pi}{2}\right)$?
(a) -1
(b) 1
(c) 0
(d) π
(iv) Eigen functions corresponding to different eigen values are :
(a) Linearly dependent
(b) Linearly independent
(c) Real
(d) None
(v) The fundamental period of $\tan \mathrm{x}$ is :
(a) π
(b) 2π
(c) $\frac{\pi}{2}$
(d) None
(vi) Fourier series are associated with :
(a) Algebraic functions
(b) Special functions
(c) Periodic functions defined on some interval I
(d) Linear functions
(vii) The inverse Laplace transform of $\frac{1}{s-a}$ is :
(a) 1
(b) t
(c) e^{t}
(d) e^{at}
(viii) The Laplace transform of cost is :
(a) $\frac{1}{\mathrm{~s}^{2}+1}$
(b) $\frac{\mathrm{s}}{\mathrm{s}^{2}+1}$
(c) $\frac{1}{\mathrm{~s}^{2}-1}$
(d) $\frac{\mathrm{s}}{\mathrm{s}^{2}-1}$
(ix) If $F[f(x)]=F(\lambda)$, then the Fourier transform of $f(a x)$ is :
(a) $F\left(\frac{\lambda}{a}\right)$
(b) $\frac{1}{|\mathrm{a}|} \mathrm{F}\left(\frac{\lambda}{\mathrm{a}}\right), \mathrm{a}=0$
(c) $\frac{1}{|\mathrm{a}|} \mathrm{F}(\lambda), \mathrm{a} \neq 0$
(d) $\frac{1}{|\mathrm{a}|} \mathrm{F}\left(\frac{\lambda}{\mathrm{a}}\right), \mathrm{a} \neq 0$
(x) The Fourier transform of convolution of $f(x)$ and $g(x)$ for $-\infty<x<\infty$ is :
(a) $\mathrm{F}[\mathrm{f} * \mathrm{~g}]=\mathrm{F}[\mathrm{f}(\mathrm{x})] \cdot \mathrm{F}[\mathrm{g}(\mathrm{x})]$
(b) $\mathrm{F}[\mathrm{f} * \mathrm{~g}]=\mathrm{F}[\mathrm{f}(\mathrm{x})]+\mathrm{F}[\mathrm{g}(\mathrm{x})]$
(c) $\mathrm{F}[\mathrm{f} * \mathrm{~g}]=\mathrm{F}[\mathrm{f}(\mathrm{x})]-\mathrm{F}[\mathrm{g}(\mathrm{x})]$
(d) $\mathrm{F}[\mathrm{f} * \mathrm{~g}]=\mathrm{F}[\mathrm{f}(\mathrm{x})] / \mathrm{F}[\mathrm{g}(\mathrm{x})]$

UNIT-I

2. (a) Find $P_{3}(x)$ by Rodrigues formula and show that $\int_{-1}^{1} x^{3} P_{3}(x) d x=\frac{4}{35}$.
(b) Show that $\int_{-1}^{1}\left[P_{n}^{\prime}(x)\right]^{2} d x=n(n+1)$.
3. (p) Prove that $n P_{n}=x P_{n}^{\prime}-P_{n-1}^{\prime}$, where $P_{n}^{\prime}=\frac{d P_{n}}{d x}$.
(q) Show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ if $m<n$.

UNIT-II

4. (a) Prove that $x J_{p}^{\prime}=-p J_{p}+x J_{p-1}$.
(b) Prove that $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$.
5. (p) Prove that $\mathrm{J}_{\mathrm{p}}(-\mathrm{x})=(-1)^{\mathrm{P}} \mathrm{J}_{\mathrm{p}}(\mathrm{x})$, if p is an integer.
(q) Prove that the eigen values of the SL problem are real.

UNIT-III

6. (a) Obtain the Fourier series for $f(x)=x \cos x$ in $[-\pi, \pi]$. 5
(b) Obtain the Fourier sine series for $f(x)=x^{2}$ in $0<x<2$. 5
7. (p) Express the function $f(x)=\pi x-x^{2}$ as Fourier sine series in $0 \leq x \leq \pi$. Deduce that :

$$
\begin{equation*}
\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots=\frac{\pi^{3}}{32} \tag{5}
\end{equation*}
$$

(q) Express $f(x)=x$ as a half range sine series in $0<x<2$.

UNIT-IV
8. (a) Find $\mathrm{L}\left[\mathrm{t}^{\mathrm{n}}\right]$, where n is a positive integer. 3
(b) Using transformations of derivatives find $L[t \sin$ at $]$. 3
(c) Find the Laplace transform of $\int_{0}^{t} \frac{e^{t} \sin t}{t} d t$.
9. (p) Find $L^{-1}\left[\frac{\mathrm{~s}^{2}-3 \mathrm{~s}+4}{\mathrm{~s}^{3}}\right]$.
(q) Find the inverse Laplace transform of $\frac{1}{s\left(s^{2}+4\right)}$ by the convolution theorem.
(r) Use Laplace transform to find the solution of the equation:

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t, x(0)=1, x\left(\frac{\pi}{2}\right)=-1 \tag{4}
\end{equation*}
$$

UNIT-V

10. (a) Find the finite Fourier sine and cosine transforms of $f(x)=e^{a x}$ in $(0, \ell)$.
(b) Find $\mathrm{F}\left[\mathrm{e}^{-\mathrm{x} \mid}\right]$ and hence show that:

$$
F\left[e^{-i 2 x \mid}\right]=\frac{4}{4+\lambda^{2}}
$$

11. (p) Find the Fourier sine transform of $f(x)=\frac{e^{-a x}}{x}, a>0$. Hence evaluate $\int_{0}^{\infty} \tan ^{-1} \frac{x}{a} \cdot \sin x d x$.
(q) Find the Fourier sine and cosine transforms of $f(x)=x^{n} e^{-a x}, n>0$.

B.Sc. (Part-III) Semester-V Examination
 5S : MATHEMATICS (New)
 (Mathematical Methods)
 Paper-X

Time : Three Hours]
[Maximum Marks : 60
Note :-Question No. 1 is compulsory and attempt it once and solve ONE question from each unit.

1. Choose the correct alternative ($\mathbf{1}$ mark each) :
(i) If $p_{n}(x)=1$, then what is the value of n ?
(a) 1
(b) -1
(c) 0
(d) None
(ii) The integral $\int_{-1}^{1} p_{n}(x) \cdot p_{m}(x) d x \neq 0$ if:
(a) $\mathrm{m}<\mathrm{n}$
(b) $\mathrm{m}>\mathrm{n}$
(c) $\mathrm{m} \neq \mathrm{n}$
(d) $\mathrm{m}=\mathrm{n}$
(iii) What is the value of $\mathrm{J}_{1 / 2}\left(\frac{\pi}{2}\right)$?
(a) 0
(b) 1
(c) π
(d) $\frac{\pi}{2}$
(iv) The eigen values of Strum-Liouville problem are :
(a) Real
(b) Complex
(c) Equal
(d) None
(v) Every Fourier series is a :
(a) Trigonometric series
(b) Power series
(c) Exponential series
(d) None
(vi) The fundamental period of $\sin \mathrm{x}$ is :
(a) π
(b) 2π
(c) $\frac{\pi}{2}$
(d) None
(vii) If $L[f(t)]=\frac{1}{s^{2}},(s>0)$, then $f(t)$ is :
(a) t^{n}
(b) t^{2}
(c) 1
(d) t
(viii) Every bounded function is of exponential order :
(a) 1
(b) -1
(c) 0
(d) 2
(ix) If $\mathrm{F}[\mathrm{f}(\mathrm{x})]=\mathrm{F}(\lambda)$, then Fourier transform of $\mathrm{f}(\mathrm{x}-\mathrm{a})$ is:
(a) $\mathrm{e}^{\lambda \mathrm{a}} \cdot \mathrm{F}(\lambda)$
(b) $\mathrm{e}^{\mathrm{i} \lambda a} \cdot \mathrm{~F}(\lambda)$
(c) $\mathrm{e}^{-i \lambda a \cdot} \cdot \mathrm{~F}(\lambda)$
(d) None
(x) The Fourier transform of $\mathrm{e}^{\mathrm{x} \mid}$ is:
(a) $\frac{2}{1+\lambda^{2}}$
(b) $\frac{1}{1+\lambda^{2}}$
(c) $\frac{2}{1-\lambda^{2}}$
(d) $\frac{1}{1-\lambda^{2}}$

UNIT--I

2. (a) Show that $p_{n}(1)=1$ and $p_{n}(-x)=(-1)^{n} p_{n}(x)$. Hence or otherwise deduce that $p_{n}(-1)=(-1)^{n}$.
(b) Prove that $(2 n+1) x p_{n}=(n+1) p_{n+1}+n p_{n-1}$.
3. (p) Prove that:
(i) $\int_{-1}^{1} p_{n}(x) d x=0, n \neq 0$
(ii) $\int_{-1}^{1} \mathrm{p}_{0}(\mathrm{x}) \mathrm{dx}=2$.
(q) Show that $\int_{-1}^{1} p_{m}(x) \cdot p_{n}(x) d x=0$ if $m \neq n$.
4. (a) Prove that $x J_{p}^{\prime}=p J_{p}-x J_{p+1}$.
(b) Express $\mathrm{J}_{5}(\mathrm{x})$ in terms of $\mathrm{J}_{0}(\mathrm{x})$ and $\mathrm{J}_{1}(\mathrm{x})$.
5. (p) Prove that $\mathrm{J}_{p}(\mathrm{x})=(-1)^{p} \mathrm{~J}_{\mathrm{p}}(\mathrm{x})$, if p is a positive integer.
(q) Find all the eigen values and eigen functions of the SL problem $y^{\prime \prime}+\lambda^{2} y=0, y^{\prime}(0)=y^{\prime}(\ell)=0$, $0 \leq x \leq \ell$.

UNIT-III

6. (a) Obtain the Fourier series for $f(x)=x^{2}$ in $[-\pi, \pi]$. Hence deduce that $\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
(b) Find the Fourier series for the function $\mathrm{f}(\mathrm{x})$ defined in $-\pi<\mathrm{x}<\pi$ as :

$$
f(x)=\left\{\begin{array}{cl}
-x & ,-\pi<x<0 \\
x & , 0<x<\pi
\end{array}\right.
$$

Deduce that :

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}
$$

7. (p) Obtain the Fourier series for $\sqrt{1-\cos x}$ in $(0,2 \pi)$. Hence deduce that $\frac{1}{2}=\sum_{n=1}^{\infty} \frac{1}{\left(4 n^{2}-1\right)}$.
(q) Obtain the cosine half range series for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $0<\mathrm{x}<2$.

UNIT-IV

8. (a) If $L[f(t)]=F(s)$, then prove that $L\left[e^{a t} f(t)\right]=F(s-a)$. 3
(b) Find the Laplace transform of $\mathrm{t}^{2} \sin$ at. 3
(c) Evaluate $\int_{0}^{\infty} \frac{\cos 6 \mathrm{t}-\cos 4 \mathrm{t}}{\mathrm{t}} \mathrm{dt}$.
9. (p) Find the inverse Laplace transform of $\frac{6 s-4}{s^{2}-4 s+20}$.
(q) Verify the convolution theorem for $f_{1}(t)=t, f_{2}(t)=\cosh t$.
(r) Using Laplace transform method, solve the equation :

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}+\mathrm{y}=3 \mathrm{t} \mathrm{e}^{-\mathrm{t}}, \mathrm{y}(0)=4, \mathrm{y}^{\prime}(0)=2 \tag{4}
\end{equation*}
$$

UNIT-V

10. (a) Find the finite Fourier sine and cosine transforms of $m x, 0<x<\ell$.
(b) Show that Fourier cosine transform of $f(x)=e^{-x^{2}}$ is $\frac{1}{\sqrt{2}} e^{-x^{2} / 4}$.
11. (p) Find the Fourier sine and cosine transforms of $x^{n-1}, n>0$. 5
(q) Find the finite Fourier sine and cosine transforms of $f(x)=\sin \operatorname{ax}$ in $(0, \pi)$. 5
