B.Sc. (Part-II) Semester-III Examination MATHEMATICS

(Advanced Calculus)

Paper—V

Time:	Three Hours]	[Maximum Marks: 60
Note :-	-(1) Question No. 1 is compulsory. At	ttempt once.
	(2) Attempt ONE question from each	n unit.
1 Ch	ages the correct alternative :	
	pose the correct alternative :—	
(1)	Every Cauchy sequence of real number	
	(a) unbounded	(b) bounded
	(c) bounded as well as unbounded	(d) None of these
(2)	The sequence $\langle s_n \rangle$ where $s_n = \frac{n}{n+1}$ is	s
	(a) monotonically increasing	(b) monotonically decreasing
	(c) constant sequence	(d) None of these
(3)	The harmonic series $\Sigma \frac{1}{n}$ is	
	(a) Convergent	(b) Oscillatory
	(c) Divergent	(d) None of these
(4)	Let Σa be a series with positive terms a	and $\lim_{n\to\infty} a_n^{1/n} = l$, then the series $\sum a_n$ is convergent
	if	n→∞
	(a) $l = 1$	(b) $l > 1$
	(c) $l < 1$	(d) None of these
(5)	If $\lim_{P \to P_0} f(P) = f(P_0)$; where $P, P_0 \in \mathbb{R}^2$ t	then
	(a) f is discontinuous at P ₀	(b) f is continuous at P ₀
	(c) f is continuous at P	(d) None of these
(6)	If $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = l$ exist then repe	eated limits are
	(a) equal	(b) not equal
*	(c) not exist	(d) None of these
(7)	The function f(P) has absolute minima	a at Po in D if
		(b) $f(P) \ge f(P_0)$; $\forall P \in D$
		(d) None of these

	(8)	If $u = 2x - y$ and $v = x + 4y$ then $J^1 =$	=	
		(a) 1	(b)	
		(c) $\frac{1}{9}$	(d)	None of these
	(9)	The value of $\int_{1}^{2} \int_{1}^{3} x^{2}y dy dx$ is	·	
		(a) -1	(b)	$\frac{3}{28}$
		(c) $\frac{28}{3}$	(d)	1
	(10)	The value of $\int_0^1 \int_0^1 \int_0^1 dx dy dz$ is		
		(a) 0	(b)	2
		(c) -1	(d)	1 10
		UNIT	<u></u> I	
2.	(a)	Prove that a convergent sequence of a	real	numbers is bounded. 5
	(b)	Show that the sequence $\langle S_r \rangle$, $S_n = \frac{1}{1!}$	$+\frac{1}{2!}$	$+\dots + \frac{1}{n!}$ is convergent. 5
3.	(p)	Prove that every convergent sequence	of re	al numbers is a Cauchy sequence. 5
	(q)	Show that the sequence $\langle S_n \rangle$, where $S_n =$	(1+	$\left(\frac{1}{n}\right)^n$, is convergent and that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ lies
		between 2 and 3.		5
E		UNIT		
4.	(a)	Prove that the series Σx_n converges if a that $m \ge n \ge M \Rightarrow x_{n+1} + x_{n+2} + \dots$		aly if for every $\epsilon > 0$, \exists a M(ϵ) ϵ N such $\alpha = 1$
	(b)	Test the convergence of the series $\frac{1}{x(x)}$ $x \in \mathbb{R}, x \neq 0$.	1 + 2)	$+\frac{1}{(x+2)(x+4)}+\frac{1}{(x+4)(x+6)}+\dots$
5.	(p)	Prove that p-series $\Sigma \frac{1}{n^p}$ is convergent	for	$p > 1$ and divergent for $p \le 1$.
	(q)	Test the convergence of the series $\Sigma \frac{n}{2}$	$\frac{a^3+a}{a^n+a}$	$\forall n \in \mathbb{N}$.

UNIT-III

6. (a) Prove that $\lim_{(x,y)\to(4,-1)} (3x-2y) = 14$ by using $\in -\delta$ definition of a limit of a function.

(b) Expand $x^3 + y^3 - 3xy$ in powers of x - 2 and y - 3.

- (c) Let real valued functions f and g be continuous in an open set $D \subseteq R^2$ then prove that f + g is continuous in D.
- 7. (p) Prove that the function f(x, y) = x + y is continuous $\forall (x, y) \in \mathbb{R}^2$.
 - (q) Expand e^{xy} at the point (2, 1) upto first three terms.
 - (r) Let $f(x, y) = \frac{xy}{x^2 y^2}$, show that the simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin and each equals to zero.

UNIT-IV

- 8. (a) Find the maximum and minimum values of $x^3 + y^3 3axy$.
 - (b) Find the least distance of the origin from the plane x 2y + 2z = 9 by using Lagrange's method of multipliers.
- 9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r, s then prove that

$$\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{u},\mathbf{v})} \frac{\partial(\mathbf{u},\mathbf{v})}{\partial(\mathbf{r},\mathbf{s})} = \frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{r},\mathbf{s})}.$$

(q) If xu = yz, yv = xz and zw = xy find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration:

$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2 + y^2}} \, dy \, dx \, .$$

- (b) Evaluate $\int_{v} (2x+y)dv$, where v is the closed region bounded by the cylinder $z = 4 x^2$ and the planes x = 0, x = 2, y = 0, y = 2, z = 0.
- 11. (p) Evaluate by Stoke's theorem $\int_{c} (e^{x}dx + 2ydy dz)$, where c is the curve $x^{2} + y^{2} = 4$, z = 2.
 - (q) Evaluate by Gauss Divergence theorem $\iint_{\overline{f}} \overline{f} \cdot \overline{n} ds$; where

 $\bar{f} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ and s is the surface of rectangular parallelepiped $0 \le x \le a$; $0 \le y \le b$; $0 \le z \le c$.

B.Sc. (Part-II) Semester-III Examination MATHEMATICS

(Elementary Number Theory)

Paper-VI

Tim	e : 7	Three	Hours]	4		[Maximum Marks: 60
Not	e :	-(1)	Question No. 1 is compulsory ar	nd atte	empt it once only.	
		(2)	Attempt ONE question from each	h unit	:.	
1.	Cho	ose	the correct alternative :			€
			integers a and b that are not both	zero a	are relatively prime	e whenever .
			[a, b] = 1		(a, b) = 1	3.
		Ø 10	(a, b) = d, d > 1		None of these	1
	(2)	20 Es	$n \in N, (n, n + 1) = $	8 8		
		(a)	1	(b)	n	
		(c)	n + 1	8 60	n(n + 1)	1
	(3)	A li	inear Diophantine equation 12x +	2 50	2000 5 0	
			unique solution		infinitely many	solutions
		(c)	no solution	(d)	None of these	1
	(4)	Any	two distinct Fermat numbers are			
		(a)	Composite	(b)	Relatively prime	
		(c)	Prime numbers	(d)	None of these	1
	(5)	The	non negative residue modulo 7 o	f 17 i	s	
		(a)	0	(b)	1	
		(c)	2	(d)	3	1
	(6)	The	inverse of 2 modulo 5 is			- Ye
		(a)	3	(b)	2 .	
	to 12	(c)	5	(d)	1	1
	(7)	For	any prime p, $\tau(p) = $			
		(a)	0	(b)	1	
		(c)	2	(d)	None of these	1
	(8)	If n	is divisible by a power of prime	highe	r than one, then µ	u(n) =
		(a)	0	(b)	1	
		(c)	n	(d)	n + 1	1
	(9)	The	order of 3 modulo 5 is			
		(a)	1	(b)	2 -	
		(c)	3	(d)	4	1
YBC-	—152	254		ĺ		(Contd.)

		(a) 3 (b) 4
		(c) 5 (d) 6 1
		UNIT—I
2.	(a)	Let $\frac{a}{b}$ and $\frac{c}{d}$ be fractions in lowest terms so that $(a, b) = (c, d) = 1$. Prove that if their
		sum is an integer, then $ b = d $.
	(b)	Find the gcd of 275 and -200 and express it in the form xa + yb.
	(c)	If $(a, b) = d$, then show that $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
3.	(p)	Prove that a common multiple of any two non zero integers a and b is a multiple of the lcm [a, b].
	(q)	If $(a, 4) = 2$ and $(b, 4) = 2$, then prove that $(a + b, 4) = 4$.
	(r)	Prove the $(a, a + 2) = 1$ or 2 for every integer a.
		UNITII
4.	(a)	If P is a prime and P $a_1 a_2 \dots a_n$, then prove that P divides at least one factor a_i of
		the product i.e. $P \mid a_i$ for some i, where $1 \le i \le n$.
	(b)	Find the gcd and lcm of $a = 18900$ and $b = 17160$ by writing each of the numbers a and b in prime factorization canonical form.
5.	(p)	Define Fermat number. Prove that the Fermat number F ₅ is divisible by 641 and hence is composite.
	(q)	Find the solution of the linear Diaphantine equation $5x + 3y = 52$.
		UNIT—III
6.	(a)	Prove that congruence modulo m is an equivalence relation.
	(b)	Solve the linear congruence
		$15x \equiv 10 \pmod{25}.$
7.	(p)	Solve the system of three congruences
		$x \equiv 1 \pmod{3}, \ x \equiv 2 \pmod{5}, \ x \equiv 3 \pmod{7}.$
	(q)	If a, b, c and m are integers with $m > 0$ such that $a \equiv b \pmod{m}$, then prove that :
		(i) $(a-c) \equiv (b-c) \pmod{m}$
		(ii) $ac \equiv bc \pmod{m}$.
		UNIT—IV
8.	(a)	Define Euler ϕ -function. Prove that if P is a prime and k a positive integer, then
		$\phi(P^k) = P^{k-1}(P-1).$
		Evaluate $\phi(3^4)$. 1+3+1

(Contd.)

(10) A quadratic residue of 7 is _____.

YBC-15254

- (b) If m is a positive integer and a is an integer with (a, m) = 1, then prove that $a^{\phi(m)} \equiv 1 \pmod{m}$.
- (c) Prove that, for any prime P,

$$\sigma(P!) = (P+1) \sigma((P-1)!).$$

9. (p) State Mobius inversion formula.

Prove that if F is a multiplicative function and $F(n) = \sum_{d/n} f(d)$, then f is also multiplicative.

1+4

(q) Let $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ be the prime factorization of the integer n > 1. If f is multiplicative function, prove that

$$\sum_{d/n} \mu(d)f(d) = (1 - f(p_1))(1 - f(p_2)).....(1 - f(p_r)).$$

UNIT-V

- (a) If P is an odd prime number, then prove that Pⁿ has a primitive root for all positive integer n.
 - (b) Define the order of a modulo m. Given that a has order 3 modulo P, where P is an odd prime, show that a + 1 must have order 6 modulo P.

 1+4
- 11. (p) Prove that the quadratic residues of odd prime P are congruent modulo P to the integers

$$1^2, 2^2, \ldots, \left(\frac{P-1}{2}\right)^2.$$

(q) Solve the quadratic congruence

$$5x^2 - 6x + 2 \equiv 0 \pmod{13}.$$

B.Sc. Part—II (Semester—III) Examination

MATHEMATICS (New)

Paper—V

(Advanced Calculus)

Time	: T	hree	Hours]		[Maximum Marks: 60
Note	:	(1)	Question No. 1 is compulsory. Attempt of	once.	
		(2)	Attempt one question from each unit.		
1. (Cho	ose 1	the correct alternative :		
(i)	A s	equence <s,> is strictly increasing if</s,>	_ A	$n \in N$.
		(a)	$S_n = S_{n+1}$	(b)	$S_n \leq S_{n+1}$
		(c)	$S_n < S_{n+1}$	(d)	$S_n > S_{n+1} $
(ii)	Let	$\{x_n\}$ be a Cauchy sequence of real number	s. Th	en the sequence $\{\cos x_n\}$ is
		(a)	Unbounded	(b)	Bounded but not Cauchy
		(c)	Cauchy but not bounded	(d)	Cauchy sequence 1
(iii)	The	P-series $\sum \frac{1}{n^p}$ is convergent for	2	
		(a)	P < 1	(b)	P > 1
		(c)	$\dot{\mathbf{P}} = 1$	(d)	$\mathbf{P} = 0$
(iv)	The	series $\sum x_n = \sum \frac{1}{4^n + 1}$ is		
		(a)	Convergent	(b)	Divergent
		(c)	Harmonic	(d)	None of these
VOX	-352	80	. 1		(Contd.)

(v)	If it	terated limits of a function are no	ot equal at poi	nt then:	
	(a)	Limit exist at that point	(b)	Limit does not exist	
	(c)	Limit is zero	(d)	None of these	1
(vi)	If l	$\lim_{P \to P_0} f(P) = f(P_0)$ then :			
	(a)	f is continuous at Po	(b)	f is discontinuous at P ₀	
	(c)	f is continuous at P	. (d)	None of these	1
(vii) If u	J = 2x - y, $v = x + 4y$ then $J = 0$	$\frac{\partial(\mathbf{u},\mathbf{v})}{\partial(\mathbf{x},\mathbf{y})} = -$		
	(a)	1 9	(b)	9	
	(c)	9	(d)	92	1
(viii		function $f(x, y)$ has an absolute $y) \in D$.	maxima at a	point (x_0, y_0) in D if	for all
	(a)	$f(x, y) \le f(x_0, y_0)$	(b)	$f(x, y) \ge f(x_0, y_0)$	
	(c)	$f_{x}(x, y) \le f_{x}(x_{0}, y_{0})$	(d)	None of these	1
(ix)	The	e series $\sum a r^{n-1}$ is convergent if	:		
	(a)	r = 1	(b)	r < 1	
	(c)	r > 1	(d)	None of these	1
(x)	\int_{1}^{2}	$\int_1^3 xy^2 dxdy = \underline{\qquad}.$			
	(a)	$\frac{24}{3}$	(b)	$\frac{26}{3}$	
	(c)	28 3	(d)	10	1
VOX-35	280		2		(Contd.)

UNIT-I

- 2. (a) Let $\langle x_n \rangle$ be a sequence of real numbers that converges to $x \neq 0$. Then prove that $\lim_{n \to \infty} \left(\frac{1}{x} \right) = \frac{1}{x}, \text{ for } x_n \neq 0 \ \forall \ n \in \mathbb{N}.$
 - (b) Show that the sequence $\langle S_n \rangle$ defined by $S_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1}$ is monotonic and bounded.
 - (c) Every convergent sequence of real numbers is a Cauchy sequence. Prove this. 3

OR

- 3. (p) Show that the sequence $\langle S_n \rangle$ defined by $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ does not converge.
 - (q) Let $\langle S_n \rangle$ be a sequence such that $\lim S_n = \ell$ and $S_n \geq 0 \ \forall \ n \in \mathbb{N}$. Then $\ell \geq 0$. Prove this.
 - (r) A real sequence $\langle S_n \rangle$ converges if and only if for each $\epsilon > 0$, $\exists M \in N$ such that $|S_m S_n| < \epsilon \ \forall m, n \ge M$. Prove this.

UNIT-II

4. (a) Let $\sum x_n$ be a positive term series such that $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \ell$.

Then the series converges if $\ell < 1$. Prove this.

(b) Test the convergence:

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$$

4

3

- (c) Define:
 - (i) Absolutely convergent
 - (ii) Harmonic series
 - (iii) Conditionally convergent.

OR

5.	(p)	If $\leq a_n > \text{ with } a_n \geq 0, n$	∈ N is monotoni	c decreasing	sequence a	and if	$\sum_{n=1}^{\infty} b_n$	is convergent
----	-----	---	-----------------	--------------	------------	--------	---------------------------	---------------

then the series
$$\sum_{n=1}^{\infty} a_n b_n$$
 is also convergent. Prove this.

(g) Test the convergence by integral test:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \, .$$

(r) Let $\sum_{n=1}^{\infty} a_n$ be a sequence of real numbers such that $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$, $a_n \ge 0 \ \forall n$. Then

$$\sum_{n=1}^{\infty} a_n \text{ diverges if } \ell > 1. \text{ Prove this.}$$

UNIT-III

6. (a) Let
$$f(x, y) = \frac{x^3}{x^2 + y^2}$$
, for $(x, y) \neq (0, 0)$

$$= 0$$
 , for $(x, y) = (0, 0)$

Using (\in, δ) definition, prove that f is continuous at (0, 0).

- (b) Expand $x^3 + y^3 3xy$ in power of x 2 and y 3 i.e. at the point (2, 3).
- (c) If limit of a function f(x,y) as $(x, y) \rightarrow (x_0, y_0)$ exists, then it is unique. Prove this.

OR

- (p) Let real valued functions f and g be continuous in an open set D ⊆ R². Then prove that f g is continuous in D.
 - (q) Expand $f(x, y) = x^3 + y^3 + 3xy$ in power of x 1 and y 1.
 - (r) Using $\in -\delta$ definition of a limit of a function, prove that $\lim_{(x,y)\to(1,1)}(x^2+2y)=3$.

3

UNIT-IV

- 8. (a) Show that the function $f(x, y) = 2x^4 3x^2y + y^2$ has neither maxima nor minima at (0, 0).
 - (b) If x + y + z = u, y + z = uv, z = uvw, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2v$.
 - (c) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane x 2y + 2z = 9.

OR

- 9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r and s then prove that : $\frac{\partial(x,y)}{\partial(r,s)} = \frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(r,s)}.$
 - (q) Let f(x, y) be defined in an open region D and it has local maximum or local minimum at (x_0, y_0) . If the partial derivatives f_x and f_y exist at (x_0, y_0) , then $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$, prove this.

UNIT-V

10. (a) Evaluate by changing the order of integration :

$$\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x \, dy dx}{\sqrt{x^2 + y^2}} \, .$$

(b) Evaluate $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dy dx$.

OR

- 11. (p) Evaluate $\int_{S} \overline{F} \cdot \overline{n} \, ds$ where $\overline{F} = axi + byj + czk$ and S is the surface of sphere $x^2 + y^2 + z^2 = 1$.
 - (q) Evaluate by Stokes theorem $\int_{C} e^{x}dx + 2ydy dz$, where C is the curve $x^{2}+y^{2} = 4$, z = 2.

B.Sc. (Part—II) Semester—III Examination MATHEMATICS

MATHEMATICS

(Advanced Calculus)

Paper-V

	773		Y 1	32 OF	٢
111110		area	ы	OHITC	١
Time		IIICC	11	Oursi	

[Maximum Marks: 60

Note:—(1) Question No. 1 is compulsory, attempt once.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternative:
 - (i) Every Cauchy sequence is:
 - (a) Unbounded

(b) Bounded

(c) Oscillatory

- (d) None of these
- (ii) The value of $\lim_{n \to \infty} \frac{4 + 3.10^n}{5 + 3.10^n}$ is:
 - (a) 4/5

(b) 0

(c) 4

- (d) 1
- (iii) If $\lim_{n\to\infty} a_n \neq 0$ then the series $\sum a_n$ is:
 - (a) Convergent

(b) Divergent

(c) Oscillatory

- (d) None of these
- (iv) Let Σa_n be a series of positive terms such that $\lim_{n\to\infty} \sqrt[n]{a_n} = \ell$; $\forall n$. Then Σa_n is convergent

if:

(a) $\ell = 1$

(b) $\ell > 1$

(c) $\ell = 0$

- (d) $\ell < 1$
- (v) If $\lim_{(x,y)\to(x_0,y_0)} f(x,y) \neq f(x_0,y_0)$ then:
 - (a) f is continuous

(b) f is continuous at (x_0, y_0)

(c) f is discontinuous

- (d) None of these
- (vi) If $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$ then the iterated limits are :
 - (a) Equal to ℓ

(b) Greater than ℓ

(c) Less than ℓ

- (d) None of these
- (vii) If u = 2x y and v = x + 4y, then $\frac{\partial(u, v)}{\partial(x, y)}$ is:
 - (a) 7

(b) 8

(c) 1/8

(d) 9

	(viii)	The necessary condition for the extremum of	f(P)	at $P_0 \in D$ is :	
		$(a) f_{x}(P_{0}) = 0$		$f_{\mathbf{y}}(P_{0}) = 0$	
		(c) $f_x(P_0) = 0$ and $f_y(P_0) = 0$		$f_x(P_0) = 0 \text{ or } f_y(P_0) = 0$	
	(ix)	The unit normal vector \bar{n} to the surface $\phi(x,$	y, z)	= 0 is given by:	
		(a) $\frac{\nabla \phi}{ \nabla \phi }$	(b)	$ abla \phi$	
		(c) \overline{k}	(d)	j	
	(x)	The value of $\iint_{0}^{2} \iint_{0}^{2} dx dy dz$ is:			
		(a) 6	(b)	8	
		(c) 4	(d)	2	10
		UNIT—I			
2.	(a)	Show that the sequence $\langle S_n \rangle$ where $S_n = (1 \text{ between 2 and 3.})$	+ 1/	n) ⁿ is convergent and its limit lies	in 5
	(b)	Prove that every Cauchy sequence of real num	nbers	s is bounded.	3
	(c)	Prove that $\lim_{n \to \infty} \frac{1 + 3 + 5 \dots + (2n - 1)}{n^2} = 1$.			2
3.	(p)	Prove that every monotonic sequence is conve	rgen	t if and only if it is bounded.	4
	(q)	Prove that every convergent sequence of real		edickistist (Louis Bullet) (Arethe Africa - Control entrol ent	3
	(r)	Show that the sequence .2, .22, .222, .2222, converge to 2/9.	* **	. is monotonic increasing and it v	vill 3
		UNIT—II			
4.	(a)	Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent for	r p >	1 and diverges when p = 1.	4
	(b)	Test the convergence of the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{4}}$ +	3
	(c)	Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2}$	<u> </u>		3
5.	(p)	Let Σa_n be a series of positive terms such that	t lin	$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n} = \ell.$ Then show that $\sum_{n=1}^{\infty} a_n$	is
		convergent if $\ell < 1$ and diverges when $\ell > 1$.			4
	(q)	Test the converges of the series $\sum_{n=1}^{\infty} \frac{1}{n (\log n)^{p}}$			3
	(r)	Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!}$.			3

(Contd.)

WPZ-8259

UNIT---III

- (a) Using ∈ -δ definition of continuity prove that f(x, y) = x ⋅ y is continuous for all (x, y) in xy-plane.
 - (b) Obtain the expansion of $f(x, y) = x^2 y^2 + 3xy$ at the point (1, 2).
 - (c) Using $\epsilon \delta$ definition, prove that $\lim_{(x,y)\to(1,2)} (x^2 + 3y) = 7$.
- 7. (p) Expand $x^3 + y^3 3xy$ in powers of (x 2) and (y 3).
 - (q) If f(x, y) is continuous at $P_0(x_0, y_0)$ then prove that it is bounded in some nbd of $P_0(x_0, y_0)$.
 - (r) Let $f(x, y) = \frac{xy}{x^2 y^2}$. Show that simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin.

UNIT-IV

- 8. (a) Locate all critical points and determine whether a local maximum or minimum occurs at these points of $f(x, y) = x^3 2x^2y x^2 2y^2 3x$.
 - (b) Find the extreme values of $u = \frac{x}{3} + \frac{y}{4}$; subject to the condition $x^2 + y^2 = 1$.
- 9. (p) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane x 2y + 2z = 9.
 - (q) If xu = yz, yv = xz and zw = xy then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

- 10. (a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$; by changing the order of integration.
 - (b) Evaluate $\iint_{0}^{1} \int_{y^2}^{1} \int_{0}^{1-x} x \, dz dx dy.$ 5
- 11. (p) Verify Gauss divergence theorem for the function $\bar{f} = x^2\bar{i} + y^2\bar{j} + z^2\bar{k}$ and S is a surface of unit cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
 - (q) Verify Stoke's theorem for the function $\bar{f} = y\bar{i} + z\bar{j}$ over the plane surface 2x + 2y + z = 2 in the first octant.

B.Sc. Part—II (Semester—III) Examination

MATHEMATICS (Old) (Upto S/17)

(Advanced Calculus)

Paper-V

Time: T	hree Hours]	[Maximum Marks : 60
Not	te:-(1) Question No. 1 is compu	lsory.
	(2) Attempt ONE question fr	rom each Unit.
1. Cho	oose correct alternatives :	(a) Alpha Diaction (b)
	Some of this could be	(Killeau Lammar) (12 / 19 / 19
(i)	The sequence $\langle s_n \rangle$, where $s_n = \frac{\gamma}{n}$	$\frac{n}{n+1}$ is:
	(a) Monotonic decreasing	(b) Monotonic increasing
	(c) Constant sequence	(d) Oscillatory sequence 1
(ii)	If $\langle s_n \rangle$, $\langle t_n \rangle$ and $\langle u_n \rangle$ be three	e sequences such that $s_n \le t_n \le u_n \ \forall \ n \in N$ and
	$\lim_{n \to \infty} s_n = \lim_{n \to \infty} u_n = \ell \text{ then } \lim_{n \to \infty} t$	
	(a) 0	(b) l
	(c) -\ell	(d) 1
(iii)	The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ is constant.	onvergent if:
	(a) $x = 0$	(b) $x = 1$
	(c) $x < 1$	(d) $\dot{\mathbf{x}} > 1$
(iv)	The series $\sum \frac{1}{n^p}$ is convergent if:	If above the S can be a significant to S and S are S and S and S are S are S and S are S are S and S are S and S are S and S are S are S and S
	(a) $p \le 1$	(b) $p > 1$
	(c) $p = 0$	(d) $p = -1$
(v)	If $x = r \cos \theta$, $y = r \sin \theta$ then the	value of $\frac{\partial(x, y)}{\partial(r, \theta)}$ is :
	(a) r	(b) -r
	(c) $r^2\theta$	(d) rθ
VTM133	363	1 (Contd.)

	(vi)	The limits $\lim_{x \to x_0} \left[\lim_{y \to y_0} F(x, y) \right]$ and	$\lim_{y \to y_0} \left[\lim_{x \to x_0} F(x, y) \right] $ are called as :	
		(a) Left hand and right hand limits	(b) Double limits	
		(c) Repeated or iterated limits	(d) None of these	1
	(vii)	The value of $\beta(m, n)$ is equal to:	(d) Trone of these	
	(,,,	(a) $\Gamma(m) \Gamma(n)$	(b) $\Gamma(m)/\Gamma(n)$	
		(c) $\beta(n, m)$	(d) None of these	1
			THE RESERVED TO SERVED THE PROPERTY OF THE PRO	model open
	(viii)	The improper integral $\int_{0}^{1} x^{m-1} (1-x)^{n}$	$^{-1}$ dx, m, n > 0 is called:	0.0
		(a) Alpha Function	(b) Beta Function	
		(c) Gamma Function	(d) None of these	1
		1.2		
	(ix)	The value of $\iint_0 dx dy$ is:		
		(a) 1	(b) ·2	
		(c) 3	(d) 0	1
	(x)	The value of $\iiint_{0}^{1} dz dy dx$ is:		
		(a) 0	(b) 1	(0)
		(c) 2	(d) 3 NIT—I	1
2.	(a)	Show that the sequence $\langle s_n \rangle$, $s_n =$	$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$ is m	onotonic and
		bounded.		3
	(b)	Prove that if limit of sequence $\langle s_n \rangle$ ex	xists then it is unique.	4
		Evaluate $\lim_{n \to \infty} \frac{1 + 3 + 5 + + (2n - 1)}{2n^2 + 1}$		3
3.	(a)	If the sequence $\langle s_n \rangle$ is monotone increto its supremum.		at it converges
	(b)	Show that the sequence <.3, .33, .333,	> is monotonic increasing and hound	led above and
	(0)	converges to 1/3.	is monotonic increasing and counc	3
	(c)	Show that the sequence $\langle s_n \rangle$, where	$s_n = \frac{1}{n}$ is a Cauchy Sequence.	3
VTN	1 —133	63	2	(Contd.)

UNIT-II

- Using integral test, test the convergence of $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)}$.
 - Discuss the convergence of the series $\sum \frac{n+1}{2n^2+3}$. 3
 - (c) Let $\sum_{n \to \infty}^{\infty} a_n$ be a sequence of real numbers such that $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$, $a_n \ge 0 \ \forall n$ then prove that:
 - (i) $\sum_{n=0}^{\infty} a_n$ converges if $\ell < 1$ (ii) $\sum_{n=1}^{\infty} a_n \text{ diverges if } \ell > 1.$
- Test the convergence of the series $\sum \frac{n^3 + a}{2^n + a}$ 3
 - Using comparison test, test the convergence of the series:

$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} + \dots$$

Prove that the geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges to $\frac{1}{1-x}$ for 0 < x < 1 and diverges for $x \ge 1$. 4

- Expand $x^3 + y^3 3xy$ in powers of (x 2) and (y 3). 3
 - Using $\in -\delta$ definition of a limit of a function, prove that $\lim_{(x,y)\to(1,1)} (x^2 + 2y) = 3$. 3
 - If f, g, are continuous at p_0 then prove that f g is continuous at p_0 . 4
- (a) If $x = \rho \cos \phi$, $y = \rho \sin \phi$, z = z. Find $\frac{\partial(x, y, z)}{\partial(\rho, \phi, z)}$ 3
 - A rectangular box open at the top is to have a volume of 32 cc. Find the dimensions of the box requiring least material for its construction.
 - By Lagrange's multipliers method find absolute maximum or minimum for $f(x, y) = x^2 + y^2$ where $x^4 + y^4 = 1$.

UNIT-IV

8. (a) Prove that $\Gamma(n+1) = n\Gamma(n)$.

4

(b) Evaluate $\int_{0}^{\infty} \frac{x^3}{(1+x)^7} dx.$

3

(c) Evaluate $\int_{0}^{\log 8} \int_{0}^{\log y} e^{x+y} dx dy.$

3

9. (a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{1}{1+x^2+y^2} dx dy.$

3

3

(b) Prove that $\int_{0}^{\infty} e^{-x^{\frac{1}{n}}} dx = n \lceil n \rceil.$

4

(c) Prove that $B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

UNIT-V

10. (a) Change the order of integral $\int_{0}^{4} \int_{0}^{\sqrt{4x-x^2}} f(x, y) dy dx$.

- 5
- (b) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2 + y^2}}.$
- 11. (a) Evaluate by changing to polar coordinates $\iint_R \frac{x^2}{\sqrt{x^2 + y^2}} dx dy$, where R is the region bounded by $0 \le x \le y$, $0 \le x \le a$.
 - (b) Evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$ by changing the order of integration.

B.Sc. (Part-II) Semester-III Examination

MATHEMATICS (New)

(Advanced Calculus)

	Paper—	V	
Time: T	Three Hours]	[Maximum Marks : 6	0
Note :-	-(1) Question No. 1 is compulsory, attem	pt once.	
	(2) Attempt ONE question from each ur	nit.	
1. Cho	pose the correct alternative :		
(1)	The sequence $\langle s_n \rangle$; where $s_n = r^n$ converges	erges to zero if:	1
	(a) $ r < 1$	(b) r > 1	
	(c) $ r = 1$	(d) None of these	
. (2)	The value of $\lim_{n\to\infty} \frac{3^n}{2^{2n}}$ is:		1
	(a) 2	(b) 1	
	(c) 0	(d) 4	
(3)	Let Σa_n be a series of positive terms such	that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \ell \vee_n$; then the series $\sum a_n$	S
	convergent if:		1
	(a) $l = 1$	(b) $l < 1$	
	(c) $l > 1$	(d) None of these	
(4)	The series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ is o	called:	1
	(a) Geometric series	(b) Harmonic series	
	(c) Arithmetic series	(d) None of these	

UNW—27421 1 (Contd.)

(5)	The	value of $\lim_{x \to 2} \begin{cases} \lim_{y \to 1} (xy - 3x) \end{cases}$	+4) is:		1
	(a)	4	(b)	3	
	(c)	1	(d)	0	
(6)	The	value of δ in the following ex	expression 0 <	$ (x, y) - (0, 0) < \delta \Rightarrow x^2 + y^2 < \frac{1}{10}$	00
	is:				1
	(a)	$\frac{1}{100}$	(b)	1 10	
	(c)	1	(d)	None of these	
(7)		nction f(p) is said to have alcondition:	osolute maxim	num at $P_0 \in D$ iff for all $P \in D$ satisfies	es 1
		$f(P_0) \le f(P)$	(b)	$f(P_0) = f(P)$	8
		$f(P_0) \ge f(P)$		None of these	
(8)	If x	$r \cos \theta$ and $y = r \sin \theta$	then $\frac{\partial(x,y)}{\partial(r,\theta)}$ is	s:	1
	(a)	r	(b)	$\frac{1}{r}$	
	(c)	\mathbf{r}^2	(d)	$\frac{1}{r^2}$	
(9)	The	value of $\int_0^1 \int_0^2 \int_0^3 dx dy dz$	is:		1
	(a)	6.	(b)	2	
	(c)	1	(d)	3	
(10)) If F	$= y\overline{i} + x\overline{j} + z^2\overline{k}$ then div \overline{F}	at (1, 1, 1) is		1
	(a)	2	(b)	1	
	(c)	0	(d)	3	
UNW-27	7421		2	(Cont	d.)

UNIT-I

2. (a) If $\lim_{n\to\infty} s_n = \ell$ and $\lim_{n\to\infty} t_n = m$ then prove that :

$$\lim_{n\to\infty} s_n t_n = \ell m.$$

- (b) Let $\langle s_n \rangle$ be a sequence such that $\lim_{n \to \infty} s_n = \ell$ and $s_n \ge 0$, then prove that $l \ge 0$. 3
- (c) Prove that:

$$\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{n^2} = \frac{1}{2}.$$

4

- 3. (p) Prove that limit of sequence if it exist is unique.
 - (q) Prove that the sequence $\langle s_n \rangle$, $s_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is monotonic and bounded.
 - (r) Show that the sequence $\langle s_n \rangle$ defined by $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ does not converge.

UNIT-II

- 4. (a) Prove that the Geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ is converges to $\frac{a}{1-r}$ if 0 < r < 1 and diverges for $r \ge 1$.
 - (b) Test the converges of the series $\sum_{n=1}^{\infty} \frac{n}{2n^3 1}$.
 - (c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.
- 5. (p) Let Σa_n be a series of positive terms such that $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\ell$. Then show that the series Σa_n is convergent if $\ell<1$ and diverges when $\ell>1$.

UNW—27421 3 (Contd.)

- (q) Test the convergence of the series $\sum \left(\frac{n}{n+1}\right)^{n^2}$.
- (r) Discuss the convergence of the series $\sum \frac{1}{4^n + 1}$.

UNIT-III

- 6. (a) Prove that if limit of a function f(x, y) as $(x, y) \rightarrow (x_0, y_0)$ exist then it is unique.
 - (b) Using \in - δ definition, prove that :

$$\lim_{(x,y)\to(1,1)} (x^2 + 2y) = 3.$$

- (c) Expand $x^3 + y^3 3xy$ in powers of (x 2) and (y 3).
- (p) Using ∈-δ definition of continuity, prove that f(x, y) = x + y is continuous for all (x, y) in xy-plane.
 - (q) Prove that $\lim_{(x,y)\to(4,-1)} (3x-2y)=14$; by using $\in -\delta$ definition.
 - (r) Expand exy at the point (2, 1) upto first three terms.

UNIT-IV

- 8. (a) A rectangular box open at the top is to have a volume of 32 cubic feet. What must be the dimensions of the box if the surface area is minimum?
 - (b) Find the extreme values of $x^3 + y^3 3dxy$.
 - (c) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$; if $xy \ne 1$. State whether u and v are functionally related. If so, find the relationship.
- (p) Find the coordinates of the foot of the perpendicular drawn from the point P(6, 2, 3) to the plane z = 5x y + 2; by minimizing the square of the distance from P to any point (x, y, z) in the plane.
 - (q) Let the function f(x, y) be defined and continuous on an open region D of xy-plane. If f(x, y) has local maximum or minimum at $P_0(x_0, y_0)$ in D and f(x, y) is differentiable

at
$$P_0$$
 then prove that $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ at $P_0(x_0, y_0)$.

UNW—27421 4 (Contd.)

(r) If $x = r \cos \theta$, $y = r \sin \theta$ then find :

$$\frac{\partial(x,y)}{\partial(r,\theta)}$$
.

UNIT-V

- 10. (a) Evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$; by changing the order of integration.
 - (b) Evaluate $\iint_R x^2 dx dy dz$, where R is a cube bounded by the planes z=0, z=a, y=0, y=a, x=0, x=a.
- 11. (p) Verify Gauss divergence theorem for the function $\overline{F} = y\overline{i} + x\overline{j} + z^2\overline{k}$; over the region bounded by $x^2 + y^2 = 4$; z = 0 and z = 2.
 - (q) Verify Stoke's Theorem for the function $\overline{F} = x^2 \overline{i} + xy \overline{j}$ integrated round the square in the plane z = 0 and bounded by the lines x = 0, y = 0, x = 2, y = 2.

B.Sc. Part—II (Semester—III) Examination MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

Time: Three Hours]	[Maximum Marks : 6
--------------------	--------------------

Note: -(1) Question No. 1 is compulsory; attempt it once only.

(2) Attempt ONE question from each unit.

- 1. Choose the correct alternative:
 - (i) The product of any m consecutive integers is divisible by :
 - (a) (m + 1)!

(b) (m-1)!

(c) m!

- (d) $\frac{m}{2}!$
- (ii) If c > 0 is common divisor of a and b, then $\left(\frac{a}{c}, \frac{b}{c}\right) =$
 - (a) $\frac{(a, b)}{c}$

(b) $\frac{[a, b]}{c}$

(c) $\frac{c}{(a, b)}$

- (d) $\frac{c}{[a, b]}$
- (iii) The conjecture "Every odd integer is the sum of at most three primes" is given by :
 - (a) Euler

(b) Goldbach

(c) Eratothenes

- (d) None of these
- (iv) If x > 0, y > 0 and x y is even, then $x^2 y^2$ is divisible by :
 - (a) 3

(b) 4

(c) 5

- (d) 7
- (v) If n > 2 is a positive integer, then:

$$1^3 + 2^3 + 3^3 + 4^3 + ... + (n-1)^3 \equiv$$

(a) 0 (mod n)

(b) 1 (mod n)

(c) 2 (mod n)

(d) None of these

	(VI)	The set {0, 1, 2, 3} is complete system of residues modulo:				
		(a)	3	(b)	4	
		(c)	5	(d)	2	
	(vii)	The	function f is multiplicative, if:			
		(a)	f(mn) = f(m) f(n)	(b)	f(mn) = f(n) f(m)	
		(c)	f(mn) = f(m) f(n)	(d)	None of these	
	(viii)	If n	$t=18$, then the pair of $\tau(18)$ and $\sigma(18)$ is	3:		
		(a)	(6, 39)	(b)	(6, 40)	
		(c)	(7, 93)	(d)	(7, 92)	
	(ix)	If ($O_m(a) = n$, then $O_m(a^k) =$			
		9.51	m	5	n	27
		(a)	$\frac{m}{(m, k)}$	(b)	<u>n</u> (m, n)	
			n			
		(c)	$\frac{n}{(n, k)}$	(d)	None of these	
	(x)	The	e quadratic residues of 7 are :			
		(a)	(2, 3, 4)	(b)	(3, 5, 6)	
		(c)	(1, 2, 4)	(d)	None of these	10
			UNIT—I			
2.	(a)	Fin	d the gcd of 275 and 200 and express it i	n the	e form 275 x + 200 y.	4
	(b)	Sta	te and prove the division algorithm theorem	١.		1+3
	(c)	If (a, b) = d, then show that $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.			2
2			, ,	tha	n show that (a, b) = (b, r)	1
,	10000000		$a, b \in I, b \neq 0$ and $a = bq + r$ $0 \le r \le b$ positive integer a and b, prove that:	, the	If show that $(a, b) = (b, 1)$.	4
	(q)	1.01	(a, b) [a, b] = ab.			3
	(r)	Dro		noh	that $(a^n + b^n) \mid (a^n + b^n)$	3
	(r)	110	ve that there are no integers a, b, $n > 1$ s	uell	$\operatorname{mat}(a - 0) \mid (a + 0).$	3
		,			9	

VOX-35281

(Contd.)

UNIT—II

4.	(a)	Prove that every positive integer greater than one has at least one prime divisor.	5
	(b)	Prove that the Fermat number F ₅ is divisible by 641 and hence it is composite.	5
5.	(p)	Find the solution of the linear Diaphantine equation $10x + 6y = 110$.	5
	(q)	If P _n is the n th prime number, then prove that:	
		$P_n \le 2^{2^{n-1}}.$	5
		UNIT—III	
6.	(a)	Show that congruence is an equivalence relation.	5
	(b)	Find the solution of $140x \equiv 133 \pmod{301}$.	5
7.	(p)	If $a \equiv b \pmod{m}$, then prove that $a^n \equiv b^n \pmod{m}$, $\forall n \in \mathbb{N}$.	5
	(q)	Solve the system of three congruences:	
201		$x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{3}$, $x \equiv 5 \pmod{7}$.	5
		UNIT—IV	
8.	(a)	If m is a positive integer and a is an integer with $(a, m) = 1$, then prove that $a^{\phi(m)} \equiv 1 \pmod{m}$	1).
			5
	(b)	If n is a positive integer, then prove that:	
		$\sum_{d n} \phi(d) = n.$	5
9.	(p)	Prove that the Möbius r-function is multiplicative.	4
	(q)	For $n > 2$, prove that $\phi(n)$ is an even integer.	3
	(r)	Find the value of $\tau(1800)$ and $\sigma(1800)$.	3
		UNIT—V	
10.	Ø., 8	If $O_m(a) = n$, then prove that $a^k \equiv 1 \pmod{n}$ iff $n \mid k, \forall k \in \mathbb{N}$.	3
		If $(a, m) = d > 1$, then prove that m has no primitive root a.	3
	(c)	If p is a prime number and $d p-1$, then prove that the congruence $x^d-1 \equiv 0 \pmod{p}$ h exactly d solutions.	as 4
11.	(p)	Find all the primitive roots of $p = 17$.	5
	(q)	Show that the congruence $x^2 \equiv a \pmod{p}$ has either no solutions or exactly two incongrue solutions modulo p.	nt 5

775

VOX-35281

B.Sc. (Part-II) Semester-III Examination

MATHEMATICS

(Elementary Number Theory)

Paper—VI

Tim	ie : Tl	nree !	Hours]		[Maximum Marks : 6
	Not	e :-	-(1) Question No. 1 is compulsory, atten	npt it	once only.
			(2) Attempt ONE question from each un	nit.	
1.	Cho	ose t	he correct alternative (1 mark each):		
	(i)	The	number of multiples of 10 ⁴⁴ that divides 1	10 ⁵⁵ i	s:
		(a)	144	(b)	11
		(c)	121	(d)	12
	(ii)	The	integers of the form $2^{2^n} + 1$ are called the	e :	
		(a)	Prime number	(b)	Ramanuj number
		(c)	Fermat number	(d)	Real number
	(iii)	10.000.000	is prime then $2^p + 3^p$ is:	X : Z	
		(a)	Perfect square	(b)	Not perfect square
		(c)	Positive integer	(d)	Negative integer
	(iv)	A s	olution of $ax \equiv 1 \pmod{m}$ with $(a, m) = 1$	is c	alled an:
		(a)	Even number	(b)	Odd number
		(c)	Modulo m	(d)	Inverse of modulo m
	(v)	Wh	at is the total number of solutions in integ	gers t	o the equation $3x + 5y = 21$?
		(a)	0	(b)	· ·
		(c)	2	(d)	4
	(vi)	The	set {0, 1, 2, 3} is complete system of res	idue	s modulo :
		(a)	3	(b)	4
		(c)	5	(d)	2
	(vii)	The	function f is multiplicative if:		
		(a)	$f(m \cdot n) = f(m) f(n)$	(b)	f(mn) = f(n) f(m)
		(c)	f(mn) = f(m) f(n)	(d)	None of these
	(viii)	The	number of primitive roots of 53 is:		
		(a)	Zero	(b)	One
		(c)	Twenty	(d)	Twenty Four
			e		

		(a) Exactly one solution (b)	No solution
		(c) Infinitely many solutions (d)	Exactly two solutions
	(x)	The number of solutions to the congruence $x^3 \equiv 3$ (mod 7) is :
		(a) 3 (b)	2
		(c) 1 (d)	No solution 10
		UNIT—I	
2.	(a)	Let a and b be integers that both are not zero. Then p	prove that a and b are relatively prime
		iff there exist integers x and y such that $xa + yb = 0$	1, 4
	(b)	If $(a, b) = 1$, show that $(a + b, a - b) = 1$ or 2.	3
	(c)	If $a bc$ and $(a, b) = 1$, then prove that $a c$.	3
3.	(p)	State and prove Division Algorithm Theorem.	1+3
	(q)	If x and y are odd then prove that $x^2 + y^2$ is not a	perfect square. 3
	(r)	Show that the square of every odd integer is of the	form 8m + 1. 3
		UNIT—II	
4.	(a)	Prove that there are infinite number of primes.	5
	(b)	Find the gcd and lcm of $a = 18,900$ and $b = 17,1$	60 by writing each of the numbers
		a and b in prime factorization canonical form.	5
5.	(p)	Prove that for all positive integer n,	
		$F_0 F_1 \dots F_{n-1} = F_n - 2.$	5
	(q)		
		is a unique pair of positive divisors d ₁ of a and d ₂ of	of b such that $d = d_1 d_2$. 5
		UNIT—III	
6.	(a)	Solve the congruence:	
		$7x \equiv 3 \pmod{12}.$	4
	(b)	If $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$, then prove	that $a \equiv b \pmod{[m_1, m_2]}$.
	(c)	If a, b, c are integers such that $a \equiv b \pmod{m}$, then j	prove that $(a + c) \equiv (b + c) \pmod{m}$.
7.	(p)	If $r_1, r_2,, r_m$ is a complete system of residues mod	ulo m and (a, m) = 1, a is a positive
		integer, then prove that $ar_1 + b$, $ar_2 + b$,, $ar_m + b$	is also complete system of residues
		modulo m.	5
	(q)	If f is a polynomial with integral coefficients and a	b (mod m), then prove that:
		$f(a) \equiv f(b) \pmod{m}.$	5

(ix) The equation $m^2 - 33n + 1 = 0$, where m, n are integers, has :

UNIT-IV

- 8. (a) Define multiplicative function. If f is a multiplicative function and n = p₁^{a₁} · p₂^{a₂} ···· p_m^{a_m} is the prime-power factorization of the positive integer n, then prove that f(n) = f(p₁^{a₁}) · f(p₂^{a₂}) ···· f(p_m^{a_m}).
 - (b) If n is a positive integer, then prove that $\sum_{d|n} \phi(d) = n$.
- 9. (p) Prove that for each positive integer $n \ge 1$, $\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1 \\ 0, & n > 1 \end{cases}$.
 - (q) Solve the linear congruences using Euler's theorem $5x \equiv 3 \pmod{14}$.

UNIT-V

- 10. (a) Let p be an odd prime and let a be an integer with (a, p) = 1 then prove that $(a/p) \equiv a^{(p-1)/2} \mod (p)$.
 - (b) Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.
- 11. (p) Prove that if p is an odd prime, then $x^2 \equiv 2 \pmod{p}$ has solution iff $p \equiv \pm 1 \pmod{8}$.
 - (q) Find all primitive roots of p = 41.

B.Sc. Part—II (Semester—III) Examination MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

	The state of the s		
Time: Three Hours]			[Maximum Marks : 60
	Question No. 1 is compulsory, attem		선물에 가는 사람들은 사람들이 가는 전에 걸려가 가는 것이 없는 것이 없는 것이 없다면 하는데 없다면 없다면 하다면 모든데
(2)	Attempt ONE question from each U	nit.	it strong the first if it (iii)
	rect alternative (1 mark each):		(a) pedition (b)
(i) If $c > 0$ is	a common multiple of a and b, the	$n\left(\frac{c}{a}\right)$	$\left(\frac{c}{a}, \frac{c}{b}\right) = \frac{1}{a}$
(a) $\frac{c}{(a, b)}$	ope communic 46 miles Decementation (b)	(b)	$\frac{c}{[a,b]}$
(c) $c\left(\frac{1}{a},\right)$	$\left(\frac{1}{b}\right)$		None of these
(ii) For $n \ge 1$,	there are at least (n + 1) primes _		2 ^{2ⁿ}
(a) Great	er than	(b)	Less than
(c) Equal	to	(d)	None of these
(iii) The set {0	$\{1, 2,, m-1\}$ is a complete system.	em c	of residues modulo :
(a) m			$m-1$ regardly charge back $(\hat{\epsilon})$
(c) m + 1	1	(d)	None of these
(iv) The quadra	atic residues of 7 are:		of white is to experience that Cuttle (d) is a second of the cuttle (d) is a second of the cuttle (d) is a second of the cuttle (d).
(a) 1, 2,	3	(b)	3, 5, 6

(c) 1, 2, 4

(d) None of these

	(v)	If P	is a prime divisor of the	e Fermat number	$F_n = 2^{2^n} + 1$, then	$O_{p}(2) = $
		(a)			2 ⁿ⁺¹	
		(c)	2 ²ⁿ	(d)	2 ⁿ⁻¹	
	(vi)		number of residues			
		(a)	Equal	19 a South City Co.	Not equal	
		(c)	Greater than	(d)	Less than	
	(vii)	If p	is an odd prime, then ($-\frac{1}{p}\bigg) = -1 \text{ if :}$		
		(a)	$p \equiv 1 \pmod{4}$	(b)	$p \equiv -1 \pmod{4}$	To a 4-brefation of
		(c)	$p \equiv 0 \pmod{4}$	(d)	None of these	
	(viii)	If p	is a prime, then $2^p + 3^p$	is:		
		(a)	Perfect square	(b)	Not perfect square	re
		(c)	Prime	(d)	Positive integer	
	(ix)	For	a positive integer n, (n	$-1)! \equiv -1 \pmod{1}$	$n) \Rightarrow n \text{ is }:$	
		(a)	Prime	(b)	-ve integer	
		(c)	Positive integer	(d)	Composite Numb	per
	(x)	If 2	$^3 \equiv 1 \pmod{7}; (2, 7) \equiv$	1, then the order	of 2 modulo 7 is	: 2000 - 161
		(a)	1	(b)	2	
		(c)	3	(d)	7	10
				UNIT-I		
2. (a)			tive integers a and b satisfy olutions.	ving the equations ((a, b) = 10 and [a, b]	= 100 simultaneously,
(b)	Find	the	values of x and y to sat	isfy the equation	423x + 198y = 9.	4
(c)	If (a	, b)	= d, then show that $\left(\frac{a}{d}\right)$	$\left(\frac{b}{d}\right) = 1$.		3
VTM—1:	3366			2		(Contd.)

(p)	Prove that there are no integers $a, b, n > 1$ such that :	
	$(a^n - b^n) (a^n + b^n)$	3
(q)	If $a, b \in I$, $b \neq 0$ and $a = bq + r$, $0 \leq r < b$, then prove that $(a, b) = (b, r)$.	3
(r)	Using the Euclidean algorithm find the gcd d of the number 1109 and 4999 and the integers x and y to satisfy $d = 1109x + 4999y$.	n find
	UNIT—II	
(a)	If 2 ^m + 1 is prime, then show that m is a power of 2, for some non negative integration	er K.
(b)	Find the solution of the linear Diaphantine equation $15x + 7y = 111$.	4
(c)	Show that:	
	$F_0F_1 \dots F_{n-1} = F_{n-2}$, for all positive integers.	. 3
(p)	Prove that every positive integer a > 1 can be written uniquely as a product of primes	, apart
(q)		sly.
(r)	If p is a prime and p _{ab} then show that p _a or p _b .	2
	seeme reed (q, d) - 1, seems of UNIT-III and the state has been well to (q)	
(a)	If $r_1, r_2 \dots r_m$ is a complete system of residues modulo m and $(a, m) = 1$, a is a positive it then prove that:	nteger
	$a_{r_1} + b$, $a_{r_2} + b \dots a_{r_m} + b$ is also complete system of residues modulo m.	5
(b)	Solve the system of three congruences:	
	$x \equiv 1 \pmod{4}$	
	$x \equiv 0 \pmod{3}$	
	$x \equiv 5 \pmod{7}.$	5
(p)	Find the solutions of $15x \equiv 12 \pmod{9}$.	4
(q)	Show that 41 divide $2^{20} - 1$.	3
(r)	Prove that $ca \equiv cb \pmod{m}$ iff $a \equiv b \pmod{\frac{m}{d}}$, where $d = (c, m)$.	3
1—133	366	Contd.)
	(q) (r) (a) (b) (c) (p) (q) (r) (r)	 (q) If a, b ∈ I, b ≠ 0 and a = bq + r, 0 ≤ r < b, then prove that (a, b) = (b, r). (r) Using the Euclidean algorithm find the gcd d of the number 1109 and 4999 and the integers x and y to satisfy d = 1109x + 4999y. UNIT—II (a) If 2^m + 1 is prime, then show that m is a power of 2, for some non negative integer. (b) Find the solution of the linear Diaphantine equation 15x + 7y = 111. (c) Show that: F₀F₁ F_{n-1} = F_{n-2}, for all positive integers. (p) Prove that every positive integer a > 1 can be written uniquely as a product of primes from the order in which the factors occurs i.e. a = p₁p₂ p_n all p₁ being primes. (q) If a prime p > 3, then show that 2p + 1 and 4p + 1 can not be prime simultaneous. If p is a prime and p _{ab} then show that p _a or p _b. UNIT—III (a) If r₁, r₂ r_m is a complete system of residues modulo m and (a, m) = 1, a is a positive in then prove that: a_{t1} + b, a_{t2} + ba_{tm} + b is also complete system of residues modulo m. (b) Solve the system of three congruences: x = 1 (mod 4) x = 0 (mod 3) x = 5 (mod 7). (p) Find the solutions of 15x = 12 (mod 9). (q) Show that 41 divide 2²⁰ - 1. (r) Prove that ca = cb (mod m) iff a = b (mod m/d), where d = (c, m).

UNIT-IV

- 8. (a) Find the number of positive integers less or equal to 7200 that are prime to 3600.
 - (b) If $n = p_1^{a_1} p_2^{a_2} ... p_m^{a_m}$ is the prime-power factorization of the positive integer n, then show that:

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) ... \left(1 - \frac{1}{p_m} \right).$$

(c) If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$, then prove that :

$$\tau(n) = (\alpha_1 + 1) (\alpha_2 + 1) \dots (\alpha_m + 1).$$

5

5

- 9. (p) Prove that the möbius u-function is multiplicative.
 - (r) If m and n are two positive relatively prime integer, then show that $\phi(m n) = \phi(m) \phi(n)$.

UNIT-V

- 10. (a) If a and m are relatively prime positive integers and if a is a primitive root of m, then show that the integers a, a^2 , ... $a^{\phi(m)}$ form a reduced residue set modulo m.
 - (b) Solve the quadratic congruence $x^2 + 7x + 10 \equiv 0 \pmod{11}$.
 - (c) If p is a prime number and $d|_{(p-1)}$, then prove that the congruence $x^d 1 \equiv 0 \pmod{p}$ has exactly d solutions.
- 11. (p) If p is an odd prime and a, b are integers with (a, p) = 1 = (b, p) then prove that :

(i)
$$a \equiv b \pmod{p} \Rightarrow \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

(ii)
$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

(iii)
$$\left(\frac{a^2}{p}\right) = 1$$
.

(q) If p is a odd prime and a is a primitive root of p such that $a^{p-1} \not\equiv 1 \pmod{p^2}$, then show that for each positive integer $n \ge 2$

$$a^{p^{n-2}}(p-1) \not\equiv 1 \pmod{p^n}.$$

B.Sc. (Part-II) Semester-III Examination

MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

Time: T	Three	Hours]			[Maximum	Marks: 60
Note :-	-(1)	Question No. 1 is compulsory. Att	empt it	t at once only.		
	(2)	Attempt ONE question from each	unit.			
1. Cho	ose t	the correct alternative (1 mark each):			10
(1)	If c	> 0 is common divisor of a and b.	then	$\left(\frac{a}{c}, \frac{b}{c}\right)$ is equal	to:	
	(a)	(a, b)	(b)	$\frac{[a,b]}{c}$		
	(c)	$\frac{c}{(a,b)}$	(d)	$\frac{c}{[a,b]}$		
(2)	The	product of any m consecutive inte	gers is	divisible by:		
	(a)	(m + 1) !	(b)	(m-1)!		
	(c)	m !	(d)	$\left(\frac{m}{2}\right)!$		
(3)	If x	> 0, y > 0 and x $-$ y is an even, t	hen (x	$(y^2 - y^2)$ is divisi	ble by :	
	(a)		(b)			
	(c)	5	(d)	7		
(4)	If n	> 2 is a positive integer, then 1 ³ +	$-2^{3} + .$	+ $(n-1)^3$	=	
	(a)	0 (mod n)	(b)	1 (mod n)	¥/	
	(c)	2 (mod n)	(d)	None of these		
UNW—27	7422	· 1				(Contd.)
						32

	(5)	If $(a, b) = 1$ then integers a and b are:			
		(a) Prime	(b)	Relatively Primes	
		(c) Compositive	(d)	None of these	
	(6)	An integer 'r' is root of f(x) modulo p is	f :		
		(a) $f(r) \equiv 1 \pmod{p}$	(b)	$f(r) \equiv 0 \pmod{p}$	
		(c) $f(r) \equiv 2 \pmod{p}$	(d)	$f(r) \equiv p \pmod{2}$	
	(7)	The number of quadratic non residues m	odulo	23 is :	
		(a) 10	(b)	22	
		(c) 11	(d)	2	
	(8)	The congruence $x^n \equiv 2 \pmod{13}$ has a s	olutio	on for x if:	
		(a) $n = 5$	(b)	n = 7	
		(c) $n = 6$	(d)	n = 8	
	(9)	If p is a quadratic residue of an odd prin	ne q,	then q is a :	
		(a) quadratic residue of p	(b)	quadratic residue of q	
		(c) prime	(d)	residue of p	
	(10)	By Fermat's theorem when 8103 is divide	d by	103, the remainder is:	
		(a) 103	(b)	8	
		(c) 9	(d)	10	
		UNIT-	-I		
2.	(n)	If x and y are odd, prove that $x^2 + y^2$ is		a perfect aguero	4
4.		70 29 70 70 70 70 70 70 70 70 70 70 70 70 70		a perfect square.	3
		Prove that, if c a and c b, then c (a.	0 25	422v + 108v - 0	3
2		Find the values of x and y to satisfy the		ation 423x + 198y - 9.	
3.		If $(a, b) = 1$, then prove that $(ac, b) = (ac, b)$			4
	(q)	For positive integers a and b, prove that	:		2
	<i>(</i>)	(a, b) [a, b] = ab.			3
	(r)	Find:			190
		(5325, 492).			3
UNV	V27	7422 2			(Contd.)

UNIT-II

4.	(a)	Prove that every positive integer greater than one has at least one prime divisor.	4
	(b)	Prove that:	
		$(a^2, b^2) = c^2 \text{ if } (a, b) = c.$	3
	(c)	If P _n is the n th prime number then show that:	
		$P_n \le 2^{2^{n-1}}.$	3
5.	(p)	If m and n are distinct non-negative integers, then prove that $(F_m, F_n) = 1$.	5
	(q)	Find the solution of the linear Diophantine equation:	
		10x + 6y = 110.	5
		UNIT—III	
6.	(a)	Prove that congruence is an equivalence relation.	5
	(b)	Show that 41 divides $2^{20} - 1$.	5
7.	(p)	Solve the system of three congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 2 \pmod{5}$	7).
			5
	(q)	If f is a polynomial with integral coefficients and $a \equiv b \pmod{m}$, then prove that	:
		$f(a) \equiv f(b) \pmod{m}.$	5
		UNIT—IV	
8.	(a)	If p is a prime and k is a positive integer, then prove that $\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$.	5
	(b)	If m is a positive integer and a is an integer with (a, m) = 1, then prove that:	
		$a^{\phi(m)} \equiv 1 \pmod{m}$.	5
9.	(p)	Prove that Möbius μ-function is multiplicative.	4
	(q)	Find the value of $\phi(300)$.	3
	(r)	Find the value of $\tau(1800)$ and $\sigma(1800)$.	3
		UNIT—V	
10.	(a)	If $(a, m) = d > 1$, then prove that m has no primitive root of a.	5
	(b)	Prove that if r is a quadratic residue modulo $m > 2$, then $r^{\phi(m)/2} \equiv 1 \pmod{m}$.	5
11.	(p)	Let a be an odd integer, then prove that $x^2 \equiv a \pmod{4}$ has a solution if and only	if
		$a \equiv 1 \pmod{4}.$	5
	(q)	If $m > 2$ and $n > 2$ are the integers with $(m, n) = 1$, then prove that mn has no primiting	ve
		roots.	5

UNW-27422

B.Sc. Part-II (Semester-III) Examination MATHEMATICS (New)

(Advanced Calculus)

Paper-V

			raperv			
Time: T	hree	Hours]			[Maximum Mark	s: 60
		-(1) Question No. 1 is compared (2) Attempt ONE question the correct alternative:				
(i)	If th	ne limit of a sequence exists, t	he sequence is		•	
	(a)	Unbounded	(b)	Convergent		
	(c)	Divergent	(d)	Oscillatory		1
(ii)	The	sequence defined by $s_n = \frac{1}{n}$	is bounded	l and	j (5)	
	(a)	Monotone increasing	(b)	Monotone decre	easing	
	(c)	Oscillatory	(d)	None of these		1
(iii)		$\sum a_n$ be a series of positive to convergent if:	erms such that			$\sum a_n$
		ℓ = 1	(b)	ℓ<1		
	(c)	$\ell > 1$ = (b) $\ell > 0$ at some $\ell > 0$	(d)	$\ell = 0$	tional and si	1
(iv)	The	series $x_n = \frac{1}{n^2 + 2}$ is:			Olob - (b)	
	(a)	Convergent	(b)	Divergent		
	(c)	Oscillatory	(d)	None of these		1
VTM—133	64		1		3000	Contd.)

(v)	If (x	$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \neq f(x_0,y_0)$ then:				
	(a)	f is continuous		i-pur picar		
	(b)	f is discontinuous		KM.		
	(c)	function f fails to be continuous at (x ₀ :	(y_0)			
	(d)	Both (b) and (c)				1
(vi)	The	neighbourhood $N_{\delta}(x_0, y_0) - \{(x_0, y_0)\}$	is cal	led as:		
	(a)	δ-nbd		Rectangular	$abd of (x_0, y_0)$	
	(c)	Deleted δ-nbd		None of these		1
(vii)	If x	= $r \cos \theta$ y = $r \sin \theta$ then Jacobian J	$=\frac{\partial (}{\partial t}$	$\frac{(x, y)}{(r, \theta)}$ is:	Chapac the attrigated	
	(a)	r (d) (d) (d)	(b)	<u>1</u>	abilipari (a)	
	(c)		(d)	$\frac{1}{r^2}$	riseasurise of Total	1
(viii)	oper	(x_0, y_0) be a critical point of a function region $D \subseteq R^2$ and have continuous $rt - s^2 = 0 \Rightarrow$				
	(a)	f has local maximum at (x_0, y_0)				
	(b)	f has local minimum at (x_0, y_0)				
	(c)	f has neither maximum nor minimum a	t (x ₀ ,	\mathbf{y}_{0}		
	(d)	the test is inconclusive				1
(ix)	In tr	ansforming double integral to polar co-	ordir	nates we use dx	$dy = \frac{1}{2}$	
	(a)	$drd\theta$	(b)	rdrdθ		
	(c)	$\frac{1}{r} dr d\theta$	(d)	$\frac{dr}{d\theta} \ .$	2 2005 pt (VI)	1
		Cashing Land (4.4)				

	(p) Show that an abindone's convergent series is convergent but its converge necessarily d
(x)	The value of $\iiint_{0} dx dy dz$ is:
	(a) 1 (b) 0 and to see the part of the par
	(c) 2 (d) 3
	UNIT—I
(a)	Every convergent sequence of real numbers is a Cauchy Sequence. Prove this.
(b)	Let $\langle s_n \rangle$ be a sequence such that $\lim_{n \to \infty} s_n = \ell$ and $s_n \ge 0 \ \forall \ n \in \mathbb{N}$. Then prove $\ell \ge 0$.
	g (a) that fix y) he defined and continuous to the open region D and let fix, y
(c)	Show that the sequence $\langle s_n \rangle$ defined by $s_n = \frac{1}{n+1} + \frac{1}{n+2} + + \frac{1}{n+n}$ converges.
	4 (b) Using e in definition of a limit of a function, prove that (1 line (3x - 2y) =
(p)	Prove that a monotonic sequence of real numbers is convergent if and only if it is bounded.
(q)	Evaluate $\lim_{n \to \infty} s_n$ for $s_n = \sqrt{n+a} - \sqrt{n+b}$, $a \ne b$.
(r)	Let $\langle x_n \rangle$ be a sequence of real numbers and for each $n \in \mathbb{N}$. Let $s_n = x_1 + x_2 + + x_n$ and $t_n = x_1 + x_2 + + x_n $. Prove that if $\langle t_n \rangle$ is a Cauchy sequence then $\langle s_n \rangle$ is Cauchy
	sequence. The part world the first experience of the sequence
	UNIT—II Librar one stimit second moves to ten to a condition of the condi
(a)	Show that $\sum \frac{1}{(2n+1)^3}$ is convergent and $\sum \frac{1}{(2n-1)^{1/2}}$ is divergent.
(b)	Let $\sum_{n=1}^{\infty} a_n$ be a sequence of real numbers such that $\ell = \lim_{n \to \infty} \sqrt[n]{a_n}$, $a_n \ge 0$, \forall n. Then
agries.	prove that $\sum a_n$ is convergent if $\ell < 1$.
(c)	A series $\sum x_n$ of non-negative terms then prove that the sequence $< s_n >$ of partial sum is
	monotonic increasing.

2.

3.

4.

5.	(p)	Show that an absolutely convergent series is convergent but its converse necessarily does not hold.
	(q)	Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$, $p > 0$ by Cauchy's Integral Test. 4
	(r)	Test the convergence of $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} +$ 2
		UNIT—III
6.	(a)	Let $f(x, y)$ be defined and continuous in the open region D and let $f(x_1, y_1) = z_1$, $f(x_2, y_2) = z_2$, $z_1 \neq z_2$. Then for every number z_0 between z_1 and z_2 , there is a point (x_0, y_0) of D for which $f(x_0, y_0) = z_0$, prove this.
	(b)	Using $\in -\delta$ definition of a limit of a function, prove that $\lim_{(x, y) \to (4, -1)} (3x - 2y) = 14$.
	(c)	Expand $f(x, y) = x^2 - y^2 + 3xy$ at the point (1, 2) by using Taylor's theorem.
7.		Let real valued functions f and g be continuous in an open set $D \subseteq \mathbb{R}^2$. Then prove that $f+g$ is continuous in D.
	(q)	Let $f(x, y) = \frac{x^2y^2}{x^2y^2 + (x - y)^2}$, $x^2y^2 + (x - y)^2 \neq 0$. Show that limit of the function f as
		$(x, y) \rightarrow (0, 0)$ does not exist even though iterated limits are equal.
	(r)	Expand exy at the point (2, 1) up to first three terms.
		UNIT—IV
8.	(a)	If $xu = yz$, $yv = xz$, $zw = xy$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
	(b)	Find the least distance of the origin from the plane $x - 2y + 2z = 9$ by using Lagrange's method of multipliers.
	(c)	Find the extremum of sin A sin B sin C subject to the condition $A + B + C = \pi$.

(Contd.)

VTM-13364

- 9. (p) Let f(x, y) be defined in an open region D and it has a local maximum or local minimum at (x_0, y_0) ; if the partial derivative f_x and f_y exist at (x_0, y_0) , then $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$. Prove this.
 - (q) If $x + y = 2e^{\theta} \cos \phi$, $x y = 2ie^{\theta} \sin \phi$, show that JJ' = 1.
 - (r) Use the method of Lagrange multiplier to locate all local maxima and minima and also find the absolute maximum or minimum of $f(x, y) = x^2 + y^2$, where $x^4 + y^4 = 1$.

UNIT-V

- 10. (a) Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$ where $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ and S is surface of rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$ by Gauss-divergence theorem.
 - (b) Apply Stoke's theorem to evaluate $\oint_C [(x + y)dx + (2x z)dy + (y + z)dz]$, where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0), (0, 0, 6).
- 11. (p) Evaluate the Double integral $\int_{0}^{\log 8 \log y} \int_{0}^{\exp x + y} dx dy$ 3
 - (q) Change the order of $\iint_D f(x, y) dxdy$, where D is bounded by parabolas $y^2 = x$ and $x^2 = y$.
 - (r) Evaluate $\int_{0}^{1} \int_{0}^{2(1-x)} \int_{0}^{2(1-x)-y} x^2 y \, dz dy dx$.

- - I will must whose in the war will be a problem for with a 10 copy.