B.Sc. (Part-II) Semester-III Examination MATHEMATICS
 (Advanced Calculus)
 Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :-
(1) Every Cauchy sequence of real number is \qquad .
(a) unbounded
(b) bounded
(c) bounded as well as unbounded
(d) None of these
(2) The sequence $\left\langle s_{n}\right\rangle$ where $s_{n}=\frac{n}{n+1}$ is \qquad .
(a) monotonically increasing
(b) monotonically decreasing
(c) constant sequence
(d) None of these
(3) The harmonic series $\Sigma \frac{1}{n}$ is \qquad .
(a) Convergent
(b) Oscillatory
(c) Divergent
(d) None of these
(4) Let $\sum a_{n}$ be a series with positive terms and $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=l$, then the series $\sum a_{n}$ is convergent if \qquad .
(a) $l=1$
(b) $l>1$
(c) $l<1$
(d) None of these
(5) If $\lim _{P \rightarrow P_{0}} f(P)=f\left(P_{0}\right)$; where $P, P_{0} \in R^{2}$ then \qquad .
(a) f is discontinuous at P_{0}
(b) f is continuous at P_{0}
(c) f is continuous at P
(d) None of these
(6) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=l$ exist then repeated limits are \qquad -
(a) equal
(b) not equal
(c) not exist
(d) None of these
(7) The function $f(P)$ has absolute minima at P_{0} in D if \qquad .
(a) $\mathrm{f}(\mathrm{P}) \leq \mathrm{f}\left(\mathrm{P}_{0}\right) ; \forall \mathrm{P} \in \mathrm{D}$
(b) $f(P) \geq f\left(P_{0}\right) ; \forall P \in D$
(c) $\mathrm{f}(\mathrm{P})=\mathrm{f}\left(\mathrm{P}_{0}\right) ; \forall \mathrm{P} \in \mathrm{D}$
(d) None of these
(8) If $u=2 x-y$ and $v=x+4 y$ then $J^{1}=$ \qquad -
(a) 1
(b) 9
(c) $\frac{1}{9}$
(d) None of these
(9) The value of $\int_{1}^{2} \int_{1}^{3} x^{2} y d y d x$ is \qquad .
(a) -1
(b) $\frac{3}{28}$
(c) $\frac{28}{3}$
(d) 1
(10) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z$ is \qquad .
(a) 0
(b) 2
(c) -1
(d) 1

UNIT-I

2. (a) Prove that a convergent sequence of a real numbers is bounded.
(b) Show that the sequence $\left\langle\mathrm{S}_{\mathrm{r}}\right\rangle, \mathrm{S}_{\mathrm{n}}=\frac{1}{1!}+\frac{1}{2!}+\ldots \ldots+\frac{1}{\mathrm{n}!}$ is convergent.
3. (p) Prove that every convergent sequence of real numbers is a Cauchy sequence.
(q) Show that the sequence $\left\langle S_{n}>\right.$, where $S_{n}=\left(1+\frac{1}{n}\right)^{n}$, is convergent and that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ lies between 2 and 3 .

UNIT-II

4. (a) Prove that the series $\sum x_{n}$ converges if and only if for every $\in>0, \exists a \mathrm{M}(\epsilon) \in \mathrm{N}$ such that $m \geq n \geq M \Rightarrow\left|x_{n+1}+x_{n+2}+\ldots \ldots+x_{m}\right|<\epsilon$.
(b) Test the convergence of the series $\frac{1}{x(x+2)}+\frac{1}{(x+2)(x+4)}+\frac{1}{(x+4)(x+6)}+\ldots \ldots \ldots$, $x \in R, x \neq 0$.
5. (p) Prove that p -series $\Sigma \frac{1}{\mathrm{n}^{\mathrm{p}}}$ is convergent for $\mathrm{p}>1$ and divergent for $\mathrm{p} \leq 1$.
(q) Test the convergence of the series $\sum \frac{n^{3}+a}{2^{n}+a} \forall n \in N$.
6. (a) Prove that $\lim _{(x, y) \rightarrow(4,-1)}(3 x-2 y)=14$ by using $\in-\delta$ definition of a limit of a function.
(b) Expand $\mathrm{x}^{3}+\mathrm{y}^{3}-3 \mathrm{xy}$ in powers of $\mathrm{x}-2$ and $\mathrm{y}-3$.
(c) Let real valued functions f and g be continuous in an open set $D \subseteq R^{2}$ then prove that $f+g$ is continuous in D.
7. (p) Prove that the function $f(x, y)=x+y$ is continuous $\forall(x, y) \in R^{2}$.
(q) Expand e^{xy} at the point $(2,1)$ upto first three terms.
(r) Let $f(x, y)=\frac{x y}{x^{2}-y^{2}}$, show that the simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin and each equals to zero.

3

UNIT—IV

8. (a) Find the maximum and minimum values of $x^{3}+y^{3}-3 a x y$.
(b) Find the least distance of the origin from the plane $x-2 y+2 z=9$ by using Lagrange's method of multipliers.
9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r, s then prove that

$$
\begin{equation*}
\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{u}, \mathrm{v})} \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{r}, \mathrm{~s})}=\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{r}, \mathrm{~s})} \tag{5}
\end{equation*}
$$

(q) If $x u=y z, y v=x z$ and $z w=x y$ find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate by changing the order of integration :

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x \tag{5}
\end{equation*}
$$

(b) Evaluate $\int_{v}(2 x+y) d v$, where v is the closed region bounded by the cylinder $z=4-x^{2}$ and the planes $x=0, x=2, y=0, y=2, z=0$.
11. (p) Evaluate by Stoke's theorem $\int_{c}\left(e^{x} d x+2 y d y-d z\right)$, where c is the curve $x^{2}+y^{2}=4$, $z=2$.
(q) Evaluate by Gauss Divergence theorem $\iint_{s} \bar{f} . \bar{n} d s$; where
$\bar{f}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ and s is the surface of rectangular parallelepiped $0 \leq \mathrm{x} \leq \mathrm{a} ; 0 \leq \mathrm{y} \leq \mathrm{b} ; 0 \leq \mathrm{z} \leq \mathrm{c}$.

B.Sc. (Part-II) Semester-III Examination
 MATHEMATICS

(Elementary Number Theory)
Paper-VI
Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :-
(1) Two integers a and b that are not both zero are relatively prime whenever \qquad .
(a) $[\mathrm{a}, \mathrm{b}]=1$
(b) $(\mathrm{a}, \mathrm{b})=1$
(c) $($ a, b) $=d, d>1$
(d) None of these
(2) For $\mathrm{n} \in \mathrm{N},(\mathrm{n}, \mathrm{n}+1)=$ \qquad .
(a) 1
(b) n
(c) $\mathrm{n}+1$
(d) $n(n+1)$
(3) A linear Diophantine equation $12 x+8 y=199$ has \qquad .
(a) unique solution
(b) infinitely many solutions
(c) no solution
(d) None of these
(4) Any two distinct Fermat numbers are \qquad .
(a) Composite
(b) Relatively prime
(c) Prime numbers
(d) None of these
(5) The non negative residue modulo 7 of 17 is \qquad .
(a) 0
(b) 1
(c) 2
(d) 3
(6) The inverse of 2 modulo 5 is \qquad .
(a) 3
(b) 2
(c) 5
(d) 1
(7) For any prime $p, \tau(p)=$ \qquad .
(a) 0
(b) 1
(c) 2
(d) None of these
(8) If n is divisible by a power of prime higher than one, then $\mu(\mathrm{n})=$ \qquad .
(a) 0
(b) 1
(c) n
(d) $\mathrm{n}+1$
(9) The order of 3 modulo 5 is \qquad .
(a) 1
(b) 2
(c) 3
(d) 4
(10) A quadratic residue of 7 is \qquad .
(a) 3
(b) 4
(c) 5
(d) 6

UNIT-I
2. (a) Let $\frac{\mathrm{a}}{\mathrm{b}}$ and $\frac{\mathrm{c}}{\mathrm{d}}$ be fractions in lowest terms so that $(\mathrm{a}, \mathrm{b})=(\mathrm{c}, \mathrm{d})=1$. Prove that if their sum is an integer, then $|b|=|d|$. 4
(b) Find the gcd of 275 and -200 and express it in the form $x a+y b$. 4
(c) If $(\mathrm{a}, \mathrm{b})=\mathrm{d}$, then show that $\left(\frac{\mathrm{a}}{\mathrm{d}}, \frac{\mathrm{b}}{\mathrm{d}}\right)=1$.
3. (p) Prove that a common multiple of any two non zero integers a and b is a multiple of the $\mathrm{lcm}[\mathrm{a}, \mathrm{b}]$.
(q) If $(a, 4)=2$ and $(b, 4)=2$, then prove that $(a+b, 4)=4$.
(r) Prove the $(a, a+2)=1$ or 2 for every integer a.

UNIT--II

4. (a) If P is a prime and $\mathrm{P} \mid \mathrm{a}_{1} \mathrm{a}_{2} \ldots \ldots \mathrm{a}_{\mathrm{n}}$, then prove that P divides at least one factor a_{1} of the product i.e. $\mathrm{P} \mid \mathrm{a}_{\mathrm{i}}$ for some i , where $1 \leq \mathrm{i} \leq \mathrm{n}$.
(b) Find the ged and lcm of $\mathrm{a}=18900$ and $\mathrm{b}=17160$ by writing each of the numbers a and b in prime factorization canonical form.
5. (p) Define Fermat number. Prove that the Fermat number F_{5} is divisible by 641 and hence is composite.
(q) Find the solution of the linear Diaphantine equation $5 x+3 y=52$.

UNIT-III
6. (a) Prove that congruence modulo m is an equivalence relation.
(b) Solve the linear congruence

$$
15 x \equiv 10(\bmod 25)
$$

7. (p) Solve the system of three congruences

$$
\begin{equation*}
x \equiv 1(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7) \tag{6}
\end{equation*}
$$

(q) If a, b, c and m are integers with $m>0$ such that $a \equiv b(\bmod m)$, then prove that :
(i) $\begin{array}{ll}(a-c) \equiv(b-c)(\bmod m) & 2\end{array}$
(ii) $\mathrm{ac} \equiv \mathrm{bc}(\bmod \mathrm{m})$. $\quad 2$
UNIT-IV
8. (a) Define Euler ϕ-function. Prove that if P is a prime and k a positive integer, then

$$
\phi\left(\mathrm{P}^{\mathrm{k}}\right)=\mathrm{P}^{\mathrm{k}-1}(\mathrm{P}-1) .
$$

Evaluate $\rho\left(3^{4}\right) . \quad 1+3+1$
(b) If m is a positive integer and a is an integer with $(\mathrm{a}, \mathrm{m})=1$, then prove that

$$
\begin{equation*}
\mathrm{a}^{\mathrm{d}(\mathrm{~m})} \equiv 1(\bmod \mathrm{~m}) . \tag{3}
\end{equation*}
$$

(c) Prove that, for any prime P,

$$
\sigma(\mathrm{P}!)=(\mathrm{P}+1) \sigma((\mathrm{P}-1)!)
$$

9. (p) State Mobius inversion formula.

Prove that if F is a multiplicative function and $F(n)=\sum_{d / n} f(d)$, then f is also multiplicative.
(q) Let $n=p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \ldots . . p_{r}{ }^{a_{4}}$ be the prime factorization of the integer $n>1$. If f is multiplicative function, prove that

$$
\begin{gathered}
\sum_{\mathrm{d} / \mathrm{n}} \mu(\mathrm{~d}) \mathrm{f}(\mathrm{~d})=\left(1-\mathrm{f}\left(\mathrm{p}_{1}\right)\right)\left(1-\mathrm{f}\left(\mathrm{p}_{2}\right)\right) \ldots .\left(1-\mathrm{f}\left(\mathrm{p}_{\mathrm{r}}\right)\right) \\
\text { UNIT-V }
\end{gathered}
$$

10. (a) If P is an odd prime number, then prove that P^{n} has a primitive root for all positive integer n.
(b) Define the order of a modulo m. Given that a has order 3 modulo P, where P is an odd prime, show that $a+1$ must have order 6 modulo P. $1+4$
11. (p) Prove that the quadratic residues of odd prime P are congruent modulo P to the integers

$$
\begin{equation*}
1^{2}, 2^{2}, \ldots .,\left(\frac{\mathrm{P}-1}{2}\right)^{2} \tag{5}
\end{equation*}
$$

(q) Solve the quadratic congruence

$$
5 x^{2}-6 x+2 \equiv 0(\bmod 13)
$$

B.Sc. Part-II (Semester-III) Examination MATHEMATICS (New)
 Paper-V
 (Advanced Calculus)

Time : Three Hours]

[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Attempt once.
(2) Attempt one question from each unit.

1. Choose the correct alternative :
(i) A sequence $<\mathrm{S}_{\mathrm{n}}>$ is strictly increasing if $\quad \forall \mathrm{n} \in \mathrm{N}$.
(a) $\mathrm{S}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}+1}$
(b) $\mathrm{S}_{\mathrm{n}} \leq \mathrm{S}_{\mathrm{n}+1}$
(c) $\mathrm{S}_{\mathrm{n}}<\mathrm{S}_{\mathrm{n}+1}$
(d) $\mathrm{S}_{\mathrm{n}}>\mathrm{S}_{\mathrm{n}+1}$

1
(ii) Let $\left\{x_{n}\right\}$ be a Cauchy sequence of real numbers. Then the sequence $\left\{\cos x_{n}\right\}$ is
(a) Unbounded
(b) Bounded but not Cauchy
(c) Cauchy but not bounded
(d) Cauchy sequence
(iii) The P -series $\sum \frac{1}{\mathrm{n}^{\mathrm{P}}}$ is convergent for \qquad .
(a) $\mathrm{P}<1$
(b) P >1
(c) $\mathrm{P}=1$
(d) $\mathrm{P}=0$

1
(iv) The series $\sum \mathrm{x}_{\mathrm{n}}=\sum \frac{1}{4^{n}+1}$ is \qquad .
(a) Convergent
(b) Divergent
(c) Harmonic
(d) None of these
(v) If iterated limits of a function are not equal at point then :
(a) Limit exist at that point
(b) Limit does not exist
(c) Limit is zero
(d) None of these
(vi) If $\lim _{P_{\rightarrow} \rightarrow P_{0}} f(P)=f\left(P_{0}\right)$ then :
(a) f is continuous at P_{0}
(b) f is discontinuous at P_{0}
(c) f is continuous at P
(d) None of these
(vii) If $u=2 x-y, v=x+4 y$ then $J=\frac{\partial(u, v)}{\partial(x, y)}=$ \qquad
(a) $\frac{1}{9}$
(b) 9
(c) 9
(d) 9^{2}
(viii) The function $f(x, y)$ has an absolute maxima at a point $\left(x_{0}, y_{0}\right)$ in D if \qquad for all $(x, y) \in D$.
(a) $f(x, y) \leq f\left(x_{0}, y_{0}\right)$
(b) $f(x, y) \geq f\left(x_{0}, y_{0}\right)$
(c) $\mathrm{f}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}) \leq \mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(d) None of these
(ix) The series $\sum a r^{\mathrm{n}-1}$ is convergent if:
(a) $r=1$
(b) $\mathrm{r}<1$
(c) $r>1$
(d) None of these
(x) $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y=$ \qquad .
(a) $\frac{24}{3}$
(b) $\frac{26}{3}$
(c) $\frac{28}{3}$
(d) 10

UNIT-I

2. (a) Let $\left.<\mathrm{x}_{\mathrm{n}}\right\rangle$ be a sequence of real numbers that converges to $\mathrm{x} \neq 0$. Then prove that $\lim _{n \rightarrow \infty}\left(\frac{1}{x_{n}}\right)=\frac{1}{x}$, for $x_{n} \neq 0 \forall n \in N$.
(b) Show that the sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$ defined by $\mathrm{S}_{\mathrm{n}}=\frac{1}{3+1}+\frac{1}{3^{2}+1}+\ldots . .+\frac{1}{3^{n}+1}$ is monotonic and bounded. 3
(c) Every convergent sequence of real numbers is a Cauchy sequence. Prove this. 3

OR

3. (p) Show that the sequence $\left\langle S_{n}\right\rangle$ defined by $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots . .+\frac{1}{n}$ does not converge. 3
(q) Let $<\mathrm{S}_{\mathrm{n}}>$ be a sequence such that $\lim \mathrm{S}_{\mathrm{n}}=\ell$ and $\mathrm{S}_{\mathrm{n}} \geq 0 \forall \mathrm{n} \in \mathrm{N}$. Then $\ell \geq 0$. Prove this.

3
(r) A real sequence $\left\langle S_{n}>\right.$ converges if and only if for each $\in>0, \exists M \in N$ such that $\left|S_{m}-S_{n}\right|<\epsilon \forall \mathrm{m}, \mathrm{n} \geq \mathrm{M}$. Prove this.

UNIT-II
4. (a) Let $\sum x_{n}$ be a positive term series such that $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\ell$.

Then the series converges if $\ell<1$. Prove this.
(b) Test the convergence :

$$
\begin{equation*}
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots . \tag{3}
\end{equation*}
$$

(c) Define :
(i) Absolutely convergent
(ii) Harmonic series
(iii) Conditionally convergent.

OR

5. (p) If $<a_{n}>$ with $a_{n} \geq 0, n \in N$ is monotonic decreasing sequence and if $\sum_{n=1}^{\infty} b_{n}$ is convergent then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is also convergent. Prove this.
(q) Test the convergence by integral test :

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}+2} \tag{3}
\end{equation*}
$$

(r) Let $\sum_{n=1}^{\infty} a_{n}$ be a sequence of real numbers such that $\ell=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}, a_{n} \geq 0 \quad \forall n$. Then $\sum_{n=1}^{\infty} a_{n}$ diverges if $\ell>1$. Prove this.

UNIT-III

6. (a) Let $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}$, for $(x, y) \neq(0,0)$

$$
=0 \quad, \text { for }(x, y)=(0,0)
$$

Using (ϵ, δ) definition, prove that f is continuous at $(0,0)$.
(b) Expand $x^{3}+y^{3}-3 x y$ in power of $x-2$ and $y-3$ i.e. at the point $(2,3)$.
(c) If limit of a function $f(x, y)$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ exists, then it is unique. Prove this.

OR

7. (p) Let real valued functions f and g be continuous in an open set $D \subseteq R^{2}$. Then prove that $f-g$ is continuous in D.
(q) Expand $f(x, y)=x^{3}+y^{3}+3 x y$ in power of $x-1$ and $y-1$.
(r) Using $\epsilon-\delta$ definition of a limit of a function, prove that $\lim _{(x, y) \rightarrow(1.1)}\left(x^{2}+2 y\right)=3$.

UNIT-IV

8. (a) Show that the function $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither maxima nor minima at $(0,0)$.
(b) If $x+y+z=u, y+z=u v, z=u v w$, prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.
(c) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane $x-2 y+2 z=9$.

OR

9. (p) If x, y are differentiable functions of u, v and u, v are differentiable functions of r and s then prove that : $\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{r}, \mathrm{s})}=\frac{\partial(\mathrm{x}, \mathrm{y})}{\partial(\mathrm{u}, \mathrm{v})} \cdot \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(\mathrm{r}, \mathrm{s})}$.
(q) Let $f(x, y)$ be defined in an open region D and it has local maximum or local minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. If the partial derivatives f_{x} and f_{y} exist at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, then $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$, prove this.

UNIT-V
10. (a) Evaluate by changing the order of integration :

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x d y d x}{\sqrt{x^{2}+y^{2}}} . \tag{5}
\end{equation*}
$$

(b) Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$.

OR

11. (p) Evaluate $\iint_{S} \bar{F} \cdot \bar{n} d s$ where $\bar{F}=a x i+b y j+c z k$ and S is the surface of sphere $x^{2}+y^{2}+z^{2}=1$.
(q) Evaluate by Stokes theorem $\int_{C} e^{x} d x+2 y d y-d z$, where C is the curve $x^{2}+y^{2}=4, z=2$.

B.Sc. (Part-II) Semester-III Examination
 MATHEMATICS
 (Advanced Calculus)
 Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) Every Cauchy sequence is :
(a) Unbounded
(b) Bounded
(c) Oscillatory
(d) None of these
(ii) The value of $\lim _{n \rightarrow \infty} \frac{4+3.10^{n}}{5+3.10^{n}}$ is :
(a) $4 / 5$
(b) 0
(c) 4
(d) 1
(iii) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then the series $\sum a_{n}$ is:
(a) Convergent
(b) Divergent
(c) Oscillatory
(d) None of these
(iv) Let $\sum a_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\ell ; \forall n$. Then Σa_{n} is convergent if :
(a) $\ell=1$
(b) $\ell>1$
(c) $\ell=0$
(d) $\ell<1$
(v) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) \neq f\left(x_{0}, y_{0}\right)$ then:
(a) f is continuous
(b) f is continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(c) fis discontinuous
(d) None of these
(vi) If $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=\ell$ then the iterated limits are :
(a) Equal to ℓ
(b) Greater than ℓ
(c) Less than ℓ
(d) None of these
(vii) If $u=2 x-y$ and $v=x+4 y$, then $\frac{\partial(u, v)}{\partial(x, y)}$ is :
(a) 7
(b) 8
(c) $1 / 8$
(d) 9
(viii) The necessary condition for the extremum of $f(P)$ at $P_{0} \in D$ is :
(a) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{P}_{0}\right)=0$
(b) $\mathrm{f}_{y}\left(\mathrm{P}_{0}\right)=0$
(c) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{P}_{0}\right)-0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{P}_{0}\right)=0$
(d) $\mathrm{f}_{\mathrm{x}}\left(\mathrm{P}_{0}\right)=0$ or $\mathrm{f}_{\mathrm{y}}\left(\mathrm{P}_{0}\right)=0$
(ix) The unit normal vector $\overline{\mathrm{n}}$ to the surface $\phi(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ is given by:
(a) $\frac{\nabla \phi}{|\nabla \phi|}$
(b) $\nabla \phi$
(c) $\overline{\mathrm{k}}$
(d) \bar{j}
(x) The value of $\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} d x d y d z$ is :
(a) 6
(b) 8
(c) 4
(d) 2

UNIT--I

2. (a) Show that the sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$ where $\mathrm{S}_{\mathrm{n}}=(1+1 / \mathrm{n})^{\mathrm{n}}$ is convergent and its limit lies in between 2 and 3 .
(b) Prove that every Cauchy sequence of real numbers is bounded.
(c) Prove that $\lim _{n \rightarrow \infty} \frac{1+3+5 \ldots \ldots+(2 n-1)}{n^{2}}=1$.
3. (p) Prove that every monotonic sequence is convergent if and only if it is bounded.4
(q) Prove that every convergent sequence of real numbers is a Cauchy sequence. 3
(r) Show that the sequence $.2, .22, .222, .2222, \ldots$. is monotonic increasing and it will converge to $2 / 9$.

UNIT--II

4. (a) Prove that the series $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{p}}}$ is convergent for $\mathrm{p}>1$ and diverges when $\mathrm{p}=1$.
(b) Test the convergence of the series $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\ldots \ldots$.

3
(c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$.
5. (p) Let $\sum a_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\ell$. Then show that $\sum_{n=1}^{\infty} a_{n}$ is convergent if $\ell<1$ and diverges when $\ell>1$.
(q) Test the converges of the series $\sum_{n=1}^{\infty} \frac{1}{n(\log n)^{p}}$.
(r) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!}$.

UNIT--III

6. (a) Using $\in-\delta$ definition of continuity prove that $f(x, y)=x \cdot y$ is continuous for all (x, y) in xy-plane.
(b) Obtain the expansion of $f(x, y)=x^{2}-y^{2}+3 x y$ at the point $(1,2)$. 3
(c) Using $\in-\delta$ definition, prove that $\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+3 y\right)=7$. 3
7. (p) Expand $x^{3}+y^{3}-3 x y$ in powers of $(x-2)$ and $(y-3)$. 4
(q) If $f(x, y)$ is continuous at $P_{0}\left(x_{0}, y_{0}\right)$ then prove that it is bounded in some nbd of $P_{0}\left(x_{0}, y_{0}\right)$.
(r) Let $f(x, y)=\frac{x y}{x^{2}-y^{2}}$. Show that simultaneous limit does not exist at the origin in spite of the fact that the repeated limits exist at the origin.

UNIT-IV

8. (a) Locate all critical points and determine whether a local maximum or minimum occurs at these points of $f(x, y)=x^{3}-2 x^{2} y-x^{2}-2 y^{2}-3 x$.
(b) Find the extreme values of $u=\frac{x}{3}+\frac{y}{4}$; subject to the condition $x^{2}+y^{2}=1$.
9. (p) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane $x-2 y+2 z=9$.
(q) If $x u=y z, y v=x z$ and $z w=x y$ then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

UNIT-V

10. (a) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$; by changing the order of integration.
(b) Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.
11. (p) Verify Gauss divergence theorem for the function $\bar{f}=x^{2} \bar{i}+y^{2} \bar{j}+z^{2} \bar{k}$ and S is a surface of unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
(q) Verify Stoke's theorem for the function $\bar{f}=y \bar{i}+z \bar{j}$ over the plane surface $2 x+2 y+z=2$ in the first octant.

B.Sc. Part-II (Semester-III) Examination MATHEMATICS (Old) (Upto S/17)

(Advanced Calculus)

Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory.
(2) Attempt ONE question from each Unit.

1. Choose correct alternatives :
(i) The sequence $\left.<\mathrm{s}_{\mathrm{n}}\right\rangle$, where $\mathrm{s}_{\mathrm{n}}=\frac{\sqrt{\mathrm{n}}}{\mathrm{n}+1}$ is :
(a) Monotonic decreasing
(b) Monotonic increasing
(c) Constant sequence
(d) Oscillatory sequence
(ii) If $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle,\left\langle\mathrm{t}_{\mathrm{n}}\right\rangle$ and $\left\langle\mathrm{u}_{\mathrm{n}}\right\rangle$ be three sequences such that $\mathrm{s}_{\mathrm{n}} \leq \mathrm{t}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}} \forall \mathrm{n} \in \mathrm{N}$ and $\operatorname{Lim}_{n \rightarrow \infty} s_{n}=\operatorname{Lim}_{n \rightarrow \infty} u_{n}=\ell$ then $\operatorname{Lim}_{n \rightarrow \infty} t_{n}$ is :
(a) 0
(b) ℓ
(c) $-\ell$
(d) 1
(iii) The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ is convergent if :
(a) $x=0$
(b) $x=1$
(c) $\mathrm{x}<1$
(d) $\dot{x}>1$
(iv) The series $\sum \frac{1}{n^{p}}$ is convergent if:
(a) $\mathrm{p} \leq 1$
(b) $\mathrm{p}>1$
(c) $\mathrm{p}=0$
(d) $\mathrm{p}=-1$
(v) If $x=r \cos \theta, y=r \sin \theta$ then the value of $\frac{\partial(x, y)}{\partial(r, \theta)}$ is :
(a) r
(b) -r
(c) $r^{2} \theta$
(d) $\mathrm{r} \theta$
(vi) The limits $\operatorname{Lim}_{x \rightarrow x_{0}}\left[\operatorname{Lim}_{y \rightarrow y_{0}} F(x, y)\right]$ and $\operatorname{Lim}_{y \rightarrow y_{0}}\left[\operatorname{Lim}_{x \rightarrow x_{0}} F(x, y)\right]$ are called as :
(a) Left hand and right hand limits
(b) Double limits
(c) Repeated or iterated limits
(d) None of these
(vii) The value of $\beta(m, n)$ is equal to :
(a) $\Gamma(\mathrm{m}) \Gamma(\mathrm{n})$
(b) $\Gamma(\mathrm{m}) / \Gamma(\mathrm{n})$
(c) $\beta(\mathrm{n}, \mathrm{m})$
(d) None of these
(viii) The improper integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n>0$ is called :
(a) Alpha Function
(b) Beta Function
(c) Gamma Function
(d) None of these
(ix). The value of $\int_{0}^{1} \int_{0}^{2} d x d y$ is :
(a) 1
(b) 2
(c) 3
(d) 0
(x) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d z d y d x$ is :
(a) 0
(b) 1
(c) 2
(d) 3
2. (a) Show that the sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle, \mathrm{s}_{\mathrm{n}}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{\mathrm{n}(\mathrm{n}+1)}$ is monotonic and bounded.
(b) Prove that if limit of sequence $<\mathrm{s}_{\mathrm{n}}>$ exists then it is unique. 4
(c) Evaluate $\operatorname{Lim}_{n \rightarrow \infty} \frac{1+3+5+\ldots+(2 n-1)}{2 n^{2}+1}$.
3. (a) If the sequence $<\mathrm{s}_{\mathrm{n}}>$ is monotone increasing and bounded above then prove that it converges to its supremum.
(b) Show that the sequence $<.3, .33, .333, \ldots>$ is monotonic increasing and bounded above and converges to $1 / 3$.
(c) Show that the sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$, where $\mathrm{s}_{\mathrm{n}}=\frac{1}{\mathrm{n}}$ is a Cauchy Sequence.

UNIT-II

4. (a) Using integral test, test the convergence of $\sum_{n=1}^{\infty} \frac{1}{(n+3)(n+4)}$.
(b) Discuss the convergence of the series $\sum \frac{\mathrm{n}+1}{2 \mathrm{n}^{2}+3}$.
(c) Let $\sum_{n=1}^{\infty} a_{n}$ be a sequence of real numbers such that $\ell=\operatorname{Lim}_{n \rightarrow \infty} \sqrt[n]{a_{n}}, a_{n} \geq 0 \forall n$ then prove that :
(i) $\sum_{n=1}^{\infty} a_{n}$ converges if $\ell<1$
(ii) $\sum_{n=1}^{\infty} a_{n}$ diverges if $\ell>1$.
5. (a) Test the convergence of the series $\sum \frac{n^{3}+a}{2^{n}+a}$.
(b) Using comparison test, test the convergence of the series :

$$
\begin{equation*}
1+\frac{1}{2^{2}}+\frac{2^{2}}{3^{3}}+\frac{3^{3}}{4^{3}}+\ldots \tag{3}
\end{equation*}
$$

(c) Prove that the geometric series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{x}^{\mathrm{n}-1}$ converges to $\frac{1}{1-\mathrm{x}}$ for $0<\mathrm{x}<1$ and diverges for $x \geq 1$.

UNIT-III
6. (a) Expand $x^{3}+y^{3}-3 x y$ in powers of $(x-2)$ and $(y-3)$.
(b) Using $\epsilon-\delta$ definition of a limit of a function, prove that $\operatorname{Lim}_{(x, y) \rightarrow(1,1)}\left(x^{2}+2 y\right)=3 . \quad 3$
(c) If f, g, are continuous at p_{0} then prove that $\mathrm{f}-\mathrm{g}$ is continuous at p_{0}.
7. (a) If $x=\rho \cos \phi, y=\rho \sin \phi, z=z$. Find $\frac{\partial(x, y, z)}{\partial(\rho, \phi, z)}$.
(b) A rectangular box open at the top is to have a volume of 32 cc . Find the dimensions of the box requiring least material for its construction.
(c) By Lagrange's multipliers method find absolute maximum or minimum for $f(x, y)=x^{2}+y^{2}$ where $x^{4}+y^{4}=1$.

UNIT-IV

8. (a) Prove that $\Gamma(n+1)=n \Gamma(n)$.
(b) Evaluate $\int_{0}^{\infty} \frac{x^{3}}{(1+x)^{7}} d x$.
(c) Evaluate $\int_{0}^{\log 8} \int_{0}^{\log y} e^{x+y} d x d y$.
9. (a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1+\mathrm{x}^{2}}} \frac{1}{1+\mathrm{x}^{2}+\mathrm{y}^{2}} \mathrm{dx} \mathrm{dy}$.
(b) Prove that $\int_{0}^{\infty} e^{-x^{\frac{1}{n}}} d x=n \sqrt{n}$.
(c) Prove that $\mathrm{B}(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})}$.
UNIT-V
10. (a) Change the order of integral $\int_{0}^{4} \int_{0}^{\sqrt{4 x-x^{2}}} f(x, y) d y d x$.
(b) Evaluate by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x d y d x}{\sqrt{x^{2}+y^{2}}}$.
11. (a) Evaluate by changing to polar coordinates $\iint_{R} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} d x d y$, where R is the region bounded by $0 \leq x \leq y, 0 \leq x \leq a$.
(b) Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ by changing the order of integration.

B.Sc. (Part-II) Semester-III Examination
 MATHEMATICS (New)

(Advanced Calculus)

Paper-V

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(1) The sequence $\left\langle\mathrm{S}_{\mathrm{n}}\right\rangle$; where $\mathrm{S}_{\mathrm{n}}=\mathrm{r}^{\mathrm{n}}$ converges to zero if:
(a) $|\mathrm{r}|<1$
(b) $|\mathrm{r}|>1$
(c) $|\mathrm{r}|=1$
(d) None of these
(2) The value of $\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{2 n}}$ is:
(a) 2
(b) 1
(c) 0
(d) 4
(3) Let $\sum a_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\ell \forall_{n}$; then the series $\sum a_{n}$ is convergent if :
(a) $l=1$
(b) $l<1$
(c) $l>1$
(d) None of these
(4) The series $1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots .+\frac{1}{n}+\ldots \ldots \ldots$ is called :
(a) Geometric series
(b) Harmonic series
(c) Arithmetic series
(d) None of these
(5) The value of $\lim _{x \rightarrow 2}\left\{\lim _{y \rightarrow 1}(x y-3 x+4)\right\}$ is:
(a) 4
(b) 3
(c) 1
(d) 0
(6) The value of δ in the following expression $0<|(x, y)-(0,0)|<\delta \Rightarrow\left|x^{2}+y^{2}\right|<\frac{1}{100}$ is:
(a) $\frac{1}{100}$
(b) $\frac{1}{10}$
(c) 1
(d) None of these
(7) A function $f(p)$ is said to have absolute maximum at $P_{0} \in D$ iff for all $P \in D$ satisfies the condition :
(a) $f\left(P_{0}\right) \leq f(P)$
(b) $f\left(\mathrm{P}_{0}\right)=\mathrm{f}(\mathrm{P})$
(c) $f\left(\mathrm{P}_{0}\right) \geq \mathrm{f}(\mathrm{P})$
(d) None of these
(8) If $x-r \cos 0$ and $y=r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is:
(a) r
(b) $\frac{1}{\mathrm{r}}$
(c) r^{2}
(d) $\frac{1}{\mathrm{r}^{2}}$
(9) The value of $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} \mathrm{dxdydz}$ is :
(a) 6 .
(b) 2
(c) 1
(d) 3
(10) If $\overline{\mathrm{F}}=\mathrm{y} \overline{\mathrm{i}}+x \overline{\mathrm{j}}+\mathrm{z}^{2} \overline{\mathrm{k}}$ then $\operatorname{div} \overline{\mathrm{F}}$ at $(1,1,1)$ is:
(a) 2
(b) 1
(c) 0
(d) 3

UNIT-I

2. (a) If $\lim _{n \rightarrow \infty} s_{n}=\ell$ and $\lim _{n \rightarrow \infty} t_{n}=m$ then prove that:

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~s}_{\mathrm{n}} \mathrm{t}_{\mathrm{n}}=\ell \mathrm{m} . \tag{4}
\end{equation*}
$$

(b) Let $<\mathrm{s}_{\mathrm{n}}>$ be a sequence such that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{s}_{\mathrm{n}}=\ell$ and $\mathrm{s}_{\mathrm{n}} \geq 0$, then prove that $l \geq 0$. 3
(c) Prove that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots \ldots \ldots+n}{n^{2}}=\frac{1}{2} . \tag{3}
\end{equation*}
$$

3. (p) Prove that limit of sequence if it exist is unique.
(q) Prove that the sequence $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle, \mathrm{s}_{\mathrm{n}}=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots \ldots \ldots+\frac{1}{\mathrm{n}!}$ is monotonic and bounded. 3
(r) Show that the sequence $<\mathrm{s}_{\mathrm{n}}>$ defined by $\mathrm{s}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots .+\frac{1}{\mathrm{n}}$ does not converge. 3 UNIT-II
4. (a) Prove that the Geometric series $\sum_{n=1}^{\infty} \operatorname{ar}^{\mathrm{n}-1}$ is converges to $\frac{\mathrm{a}}{1-\mathrm{r}}$ if $0<r<1$ and diverges for $r \geq 1$.
(b) Test the converges of the series $\sum_{n=1}^{\infty} \frac{n}{2 n^{3}-1}$.
(c) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.
5. (p) Let $\sum \mathrm{a}_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\ell$. Then show that the series $\sum \mathrm{a}_{\mathrm{n}}$ is convergent if $l<1$ and diverges when $l>1$.
(q) Test the convergence of the series $\sum\left(\frac{n}{n+1}\right)^{n^{2}}$.
(r) Discuss the convergence of the series $\sum \frac{1}{4^{n}+1}$.

UNIT-III

6. (a) Prove that if limit of a function $f(x, y)$ as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ exist then it is unique.
(b) Using $\in-\delta$ definition, prove that:

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+2 y\right)=3 \tag{3}
\end{equation*}
$$

(c) Expand $x^{3}+y^{3}-3 x y$ in powers of $(x-2)$ and $(y-3)$.
7. (p) Using $\in-\delta$ definition of continuity, prove that $f(x, y)=x+y$ is continuous for all (x, y) in $x y$-plane.
(q) Prove that $\lim _{(x, y) \rightarrow(4,-1)}(3 x-2 y)=14$; by using $\in-\delta$ definition.
(r) Expand e^{xy} at the point $(2,1)$ upto first three terms.

UNIT-IV

8. (a) A rectangular box open at the top is to have a volume of 32 cubic feet. What must be the dimensions of the box if the surface area is minimum ?
(b) Find the extreme values of $x^{3}+y^{3}-3 d x y$.
(c) If $u=\frac{x+y}{1-x y}$ and $v=\tan ^{1} x+\tan ^{'} y$, find $\frac{\partial(u, v)}{\partial(x, y)}$; if $x y \neq 1$. State whether u and v are functionally related. If so, find the relationship.

3
9. (p) Find the coordinates of the foot of the perpendicular drawn from the point $P(6,2,3)$ to the plane $z=5 x-y+2$; by minimizing the square of the distance from P to any point (x, y, z) in the plane.
(q) Let the function $f(x, y)$ be defined and continuous on an open region D) of $x y$-plane. If $f(x, y)$ has local maximum or minimum at $P_{0}\left(x_{0}, y_{0}\right)$ in D and $f(x, y)$ is differentiable at P_{0} then prove that $\frac{\partial \mathrm{f}}{\partial \mathrm{x}}=\frac{\partial \mathrm{f}}{\partial \mathrm{y}}=0$ at $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.
(r) If $x=r \cos \theta, y=r \sin \theta$ then find:

$$
\begin{equation*}
\frac{\partial(x, y)}{\partial(r, \theta)} \tag{2}
\end{equation*}
$$

UNIT-V

10. (a) Evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$; by changing the order of integration.
(b) Evaluate $\iiint_{R} x^{2} d x d y d z$, where R is a cube bounded by the planes $z=0, z=a$, $y=0, y=a, x=0, x=a$.
11. (p) Verify Gauss divergence theorem for the function $\overline{\mathrm{F}}=\mathrm{y} \overline{\mathrm{i}}+x \overline{\mathrm{j}}+z^{2} \overline{\mathrm{k}}$; over the region bounded by $\mathrm{x}^{2}+\mathrm{y}^{2}=4 ; \mathrm{z}=0$ and $\mathrm{z}=2$.
(q) Verify Stoke's Theorem for the function $\bar{F}=x^{2} \bar{i}+x y \bar{j}$ integrated round the square in the plane $\mathrm{z}=0$ and bounded by the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2, \mathrm{y}=2$.5

B.Sc. Part-II (Semester-III) Examination
 MATHEMATICS (New)
 (Elementary Number Theory)
 Paper-VI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory; attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) The product of any m consecutive integers is divisible by :
(a) $(\mathrm{m}+1)$!
(b) $(\mathrm{m}-1)$!
(c) m !
(d) $\frac{\mathrm{m}}{2}$!
(ii) If $c>0$ is common divisor of a and b, then $\left(\frac{a}{c}, \frac{b}{c}\right)=$
(a) $\frac{(a, b)}{c}$
(b) $\frac{[a, b]}{c}$
(c) $\frac{\mathrm{c}}{(\mathrm{a}, \mathrm{b})}$
(d) $\frac{c}{[a, b]}$
(iii) The conjecture "Every odd integer is the sum of at most three primes" is given by :
(a) Euler
(b) Goldbach
(c) Eratothenes
(d) None of these
(iv) If $\mathrm{x}>0, \mathrm{y}>0$ and $\mathrm{x}-\mathrm{y}$ is even, then $\mathrm{x}^{2}-\mathrm{y}^{2}$ is divisible by :
(a) 3
(b) 4
(c) 5
(d) 7
(v) If $\mathrm{n}>2$ is a positive integer, then :
$1^{3}+2^{3}+3^{3}+4^{3}+\ldots+(n-1)^{3} \equiv$
(a) $0(\bmod n)$
(b) $1(\bmod n)$
(c) $2(\bmod n)$
(d) None of these
(vi) The set $\{0,1,2,3\}$ is complete system of residues modulo :
(a) 3
(b) 4
(c) 5
(d) 2
(vii) The function f is multiplicative, if :
(a) $f(m n)=f(m) \mid f(n)$
(b) $f(m n)=f(n) \mid f(m)$
(c) $f(\mathrm{mn})=f(m) f(n)$
(d) None of these
(viii) If $\mathrm{n}=18$, then the pair of $\tau(18)$ and $\sigma(18)$ is :
(a) $(6,39)$
(b) $(6,40)$
(c) $(7,93)$
(d) $(7,92)$
(ix) If $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\mathrm{n}$, then $\mathrm{O}_{\mathrm{m}}\left(\mathrm{a}^{\mathrm{k}}\right)=$
(a) $\frac{\mathrm{m}}{(\mathrm{m}, \mathrm{k})}$
(b) $\frac{n}{(m, n)}$
(c) $\frac{\mathrm{n}}{(\mathrm{n}, \mathrm{k})}$
(d) None of these
(x) The quadratic residues of 7 are :
(a) $(2,3,4)$
(b) $(3,5,6)$
(c) $(1,2,4)$
(d) None of these

UNIT-I
2. (a) Find the gcd of 275 and 200 and express it in the form $275 x+200 y$.

4
(b) State and prove the division algorithm theorem.
(c) If $(a, b)=d$, then show that $\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
3. (p) If $a, b \in I, b \neq 0$ and $a=b q+r \quad 0 \leq r<b$, then show that $(a, b)=(b, r)$.
(q) For positive integer a and b, prove that:

$$
\begin{equation*}
(a, b)[a, b]=a b \tag{3}
\end{equation*}
$$

(r) Prove that there are no integers $a, b, n>1$ such that $\left(a^{n}-b^{n}\right) \mid\left(a^{n}+b^{n}\right)$.

UNIT-II

4. (a) Prove that every positive integer greater than one has at least one prime divisor. 5
(b) Prove that the Fermat number F_{5} is divisible by 641 and hence it is composite. 5
5. (p) Find the solution of the linear Diaphantine equation $10 x+6 y=110$. 5(q) If P_{n} is the $\mathrm{n}^{\text {th }}$ prime number, then prove that :

$$
P_{n} \leq 2^{2^{n-1}}
$$5

UNIT-III
6. (a) Show that congruence is an equivalence relation. 5
(b) Find the solution of $140 \mathrm{x} \equiv 133(\bmod 301)$. 5
7. (p) If $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then prove that $\mathrm{a}^{\mathrm{n}} \equiv \mathrm{b}^{\mathrm{n}}(\bmod m), \forall \mathrm{n} \in \mathrm{N}$. 5
(q) Solve the system of three congruences:

$$
\begin{gathered}
x \equiv 1(\bmod 4), x \equiv 0(\bmod 3), x \equiv 5(\bmod 7) \\
\text { UNIT-IV }
\end{gathered}
$$

8. (a) If m is a positive integer and a is an integer with $(a, m)=1$, then prove that $\mathrm{a}^{\phi(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$.5(b) If n is a positive integer, then prove that :

$$
\sum_{\mathrm{d}, \mathrm{n}} \phi(\mathrm{~d})=\mathrm{n} .
$$5

9. (p) Prove that the Möbius r-function is multiplicative. 4
(q) For $\mathrm{n}>2$, prove that $\phi(\mathrm{n})$ is an even integer. 3
(r) Find the value of $\tau(1800)$ and $\sigma(1800)$. 3
UNIT-V
10. (a) If $\mathrm{O}_{\mathrm{m}}(\mathrm{a})=\mathrm{n}$, then prove that $\mathrm{a}^{\mathrm{k}} \equiv 1(\bmod \mathrm{n})$ iff $\mathrm{n} \mid \mathrm{k}, \forall \mathrm{k} \in \mathrm{N}$. 3
(b) If $(a, m)=d>1$, then prove that m has no primitive root a. 3
(c) If p is a prime number and $d \mid p-1$, then prove that the congruence $x^{d}-1 \equiv 0(\bmod p)$ has exactly d solutions. 4
11. (p) Find all the primitive roots of $p=17$. 5
(q) Show that the congruence $x^{2} \equiv a(\bmod p)$ has either no solutions or exactly two incongruent solutions modulo p. 5

B.Sc. (Part-II) Semester-III Examination
 MATHEMATICS
 (Elementary Number Theory)
 Paper-VI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt it once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative (1 mark each) :
(i) The number of multiples of 10^{44} that divides 10^{55} is:
(a) 144
(b) 11
(c) 121
(d) 12
(ii) The integers of the form $2^{2^{n}}+1$ are called the :
(a) Prime number
(b) Ramanuj number
(c) Fermat number
(d) Real number
(iii) If p is prime then $2^{\mathrm{p}}+3^{\mathrm{p}}$ is:
(a) Perfect square
(b) Not perfect square
(c) Positive integer
(d) Negative integer
(iv) A solution of $\mathrm{ax} \equiv 1(\bmod \mathrm{~m})$ with $(\mathrm{a}, \mathrm{m})=1$ is called an :
(a) Even number
(b) Odd number
(c) Modulo m
(d) Inverse of modulo m
(v) What is the total number of solutions in integers to the equation $3 x+5 y=21$?
(a) 0
(b) ∞
(c) 2
(d) 4
(vi) The set $\{0,1,2,3\}$ is complete system of residues modulo :
(a) 3
(b) 4
(c) 5
(d) 2
(vii) The function f is multiplicative if :
(a) $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \mid \mathrm{f}(\mathrm{n})$
(b) $\mathrm{f}(\mathrm{mn})=\mathrm{f}(\mathrm{n}) \mid \mathrm{f}(\mathrm{m})$
(c) $f(m n)=f(m) f(n)$
(d) None of these
(viii) The number of primitive roots of 53 is :
(a) Zero
(b) One
(c) Twenty
(d) Twenty Four
(ix) The equation $m^{2}-33 n+1=0$, where m, n are integers, has :
(a) Exactly one solution
(b) No solution
(c) Infinitely many solutions
(d) Exactly two solutions
(x) The number of solutions to the congruence $x^{3} \equiv 3(\bmod 7)$ is :
(a) 3
(b) 2
(c) 1
(d) No solution

UNIT-I

2. (a) Let a and b be integers that both are not zero. Then prove that a and b are relatively prime iff there exist integers x and y such that $x a+y b=1$.
(b) If $(a, b)=1$, show that $(a+b, a-b)=1$ or 2 .
(c) If $\mathrm{a} \mid \mathrm{bc}$ and $(\mathrm{a}, \mathrm{b})=1$, then prove that $\mathrm{a} \mid \mathrm{c}$.
3. (p) State and prove Division Algorithm Theorem. $1+3$
(q) If x and y are odd then prove that $\mathrm{x}^{2}+\mathrm{y}^{2}$ is not a perfect square.
(r) Show that the square of every odd integer is of the form $8 \mathrm{~m}+1$.

UNIT-II

4. (a) Prove that there are infinite number of primes.
(b) Find the gcd and lcm of $\mathrm{a}=18,900$ and $\mathrm{b}=17,160$ by writing each of the numbers a and b in prime factorization canonical form.

5
5. (p) Prove that for all positive integer n,

$$
\begin{equation*}
F_{0} F_{1} \ldots . F_{n-1}=F_{n}-2 \tag{5}
\end{equation*}
$$

(q) Let a and b be relatively prime integers. If d is a positive divisor of $a b$, then show that there is a unique pair of positive divisors d_{1} of a and d_{2} of b such that $d=d_{1} d_{2}$.

UNIT-III
6. (a) Solve the congruence :

$$
\begin{equation*}
7 x \equiv 3(\bmod 12) \tag{4}
\end{equation*}
$$

(b) If $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{m}_{1}\right)$ and $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{m}_{2}\right)$, then prove that $\mathrm{a} \equiv \mathrm{b}\left(\bmod \left[\mathrm{m}_{1}, \mathrm{~m}_{2}\right]\right)$.
(c) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers such that $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then prove that $(\mathrm{a}+\mathrm{c}) \equiv(\mathrm{b}+\mathrm{c})(\bmod m)$.
7. (p) If $r_{1}, r_{2}, \ldots, r_{m}$ is a complete system of residues modulo m and $(a, m)=1$, a is a positive integer, then prove that $a r_{1}+b, a r_{2}+b, \ldots ., a r_{m}+b$ is also complete system of residues modulo m.
(q) If f is a polynomial with integral coefficients and $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then prove that :

$$
f(a) \equiv f(b)(\bmod m)
$$

UNIT-IV

8. (a) Define multiplicative function. If f is a multiplicative function and $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \ldots . p_{m}^{a_{m}}$ is the prime-power factorization of the positive integer n, then prove that $f(n)=f\left(p_{1}^{a_{1}}\right) \cdot f\left(p_{2}^{a_{2}}\right) \ldots f\left(p_{m}^{a_{m}}\right)$. $1+4$
(b) If n is a positive integer, then prove that $\sum_{\mathrm{d} \mid \mathrm{n}} \phi(\mathrm{d})=\mathrm{n}$.
9. (p) Prove that for each positive integer $\mathrm{n} \geq 1, \sum_{\mathrm{d} \mid \mathrm{n}} \mu(\mathrm{d})=\left\{\begin{array}{ll}1, & \mathrm{n}=1 \\ 0, & \mathrm{n}>1\end{array}\right.$.
(q) Solve the linear congruences using Euler's theorem $5 x \equiv 3(\bmod 14)$.

UNIT-V

10. (a) Let p be an odd prime and let a be an integer with $(\mathrm{a}, \mathrm{p})=1$ then prove that $(a / p) \equiv a^{(p-1) / 2} \bmod (p)$.
(b) Solve the quadratic congruence $\mathrm{x}^{2}+7 \mathrm{x}+10 \equiv 0(\bmod 11)$.
11. (p) Prove that if p is an odd prime, then $x^{2} \equiv 2(\bmod p)$ has solution iff $p \equiv \pm 1(\bmod 8)$.
(q) Find all primitive roots of $p=41$.

B.Sc. Part-II (Semester-III) Examination MATHEMATICS (New)

(Elementary Number Theory)

Paper-VI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt it once only.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternative (1 mark each) :
(i) If $\mathrm{c}>0$ is a common multiple of a and b , then $\left(\frac{\mathrm{c}}{\mathrm{a}}, \frac{\mathrm{c}}{\mathrm{b}}\right)=$ \qquad .
(a) $\frac{c}{(a, b)}$
(b) $\frac{c}{[a, b]}$
(c) $\mathrm{c}\left(\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}\right)$
(d) None of these
(ii) For $\mathrm{n} \geq 1$, there are at least $(\mathrm{n}+1)$ primes \qquad $2^{2^{n}}$
(a) Greater than
(b) Less than
(c) Equal to
(d) None of these
(iii) The set $\{0,1,2 \ldots, \mathrm{~m}-1\}$ is a complete system of residues modulo :
(a) m
(b) $\mathrm{m}-1$
(c) $\mathrm{m}+1$
(d) None of these
(iv) The quadratic residues of 7 are :
(a) $1,2,3$
(b) 3, 5, 6
(c) $1,2,4$
(d) None of these
(v) If P is a prime divisor of the Fermat number $\mathrm{F}_{\mathrm{n}}=2^{2^{\mathrm{n}}}+1$, then $\mathrm{O}_{\mathrm{p}}(2)=$ \qquad \rightarrow
(a) 2^{n}
(b) $2^{\mathrm{n}+1}$
(c) $2^{2^{n}}$
(d) $2^{\mathrm{n}-1}$
(vi) The number of residues \qquad the number of non residues.
(a) Equal
(b) Not equal
(c) Greater than
(d) Less than
(vii) If p is an odd prime, then $\left(-\frac{1}{\mathrm{p}}\right)=-1$ if :
(a) $\mathrm{p} \equiv 1(\bmod 4)$
(b) $\mathrm{p} \equiv-1(\bmod 4)$
(c) $\mathrm{p} \equiv 0(\bmod 4)$
(d) None of these
(viii) If p is a prime, then $2^{p}+3^{p}$ is :
(a) Perfect square
(b) Not perfect square
(c) Prime
(d) Positive integer
(ix) For a positive integer $n,(n-1)!\equiv-1(\bmod n) \Rightarrow n$ is :
(a) Prime
(b) -ve integer
(c) Positive integer
(d) Composite Number
(x) If $2^{3} \equiv 1(\bmod 7) ;(2,7)=1$, then the order of 2 modulo 7 is :
(a) 1
(b) 2
(c) 3
(d) 7

UNIT-I

2. (a) Find positive integers a and b satisfying the equations (a, b) $=10$ and $[a, b]=100$ simultaneously, find all solutions.
(b) Find the values of x and y to satisfy the equation $423 x+198 y=9$.
(c) If $(\mathrm{a}, \mathrm{b})=\mathrm{d}$, then show that $\left(\frac{\mathrm{a}}{\mathrm{d}}, \frac{\mathrm{b}}{\mathrm{d}}\right)=1$.
3. (p) Prove that there are no integers $\mathrm{a}, \mathrm{b}, \mathrm{n}>1$ such that:

$$
\begin{equation*}
\left(a^{n}-b^{n}\right)\left(a^{n}+b^{n}\right) \tag{3}
\end{equation*}
$$

(q) If $\mathrm{a}, \mathrm{b} \in \mathrm{I}, \mathrm{b} \neq 0$ and $\mathrm{a}=\mathrm{bq}+\mathrm{r}, 0 \leq \mathrm{r}<\mathrm{b}$, then prove that $(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{r})$.
(r) Using the Euclidean algorithm find the gcd d of the number 1109 and 4999 and then find integers x and y to satisfy $d=1109 x+4999 y$.

UNIT-II

4. (a) If $2^{m}+1$ is prime, then show that m is a power of 2 , for some non negative integer K.
(b) Find the solution of the linear Diaphantine equation $15 x+7 y=111$.
(c) Show that:

$$
F_{0} F_{1} \ldots F_{n-1}=F_{n-2} \text {, for all positive integers. }
$$

5. (p) Prove that every positive integer a >1 can be written uniquely as a product of primes, apart from the order in which the factors occurs i.e. $a=p_{1} p_{2} \ldots p_{r}$, all p_{i}, being primes.
(q) If a prime $p>3$, then show that $2 p+1$ and $4 p+1$ can not be prime simultaneously.
(r) If p is a prime and $\left.\mathrm{p}\right|_{\mathrm{ab}}$ then show that $\left.\mathrm{p}\right|_{\mathrm{a}}$ or $\left.\mathrm{p}\right|_{\mathrm{b}}$.

UNIT-III

6. (a) If $r_{1}, r_{2} \ldots r_{m}$ is a complete system of residues modulo m and $(a, m)=1$, a is a positive integer then prove that :
$a_{r_{1}}+b, a_{r_{2}}+b \ldots a_{r_{m}}+b$ is also complete system of residues modulo m.
(b) Solve the system of three congruences :

$$
\begin{align*}
& x \equiv 1(\bmod 4) \\
& x \equiv 0(\bmod 3) \\
& x \equiv 5(\bmod 7) \tag{5}
\end{align*}
$$

7. (p) Find the solutions of $15 x \equiv 12(\bmod 9)$.
(q) Show that 41 divide $2^{20}-1$.
(r) Prove that $\mathrm{ca} \equiv \mathrm{cb}(\bmod \mathrm{m})$ iff $\mathrm{a} \equiv \mathrm{b}\left(\bmod \frac{\mathrm{m}}{\mathrm{d}}\right)$, where $\mathrm{d}=(\mathrm{c}, \mathrm{m})$.

UNIT-IV

8. (a) Find the number of positive integers less or equal to 7200 that are prime to 3600 . 3
(b) If $\mathrm{n}=\mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}^{a_{2}} \ldots \mathrm{p}_{\mathrm{m}}^{\mathrm{a}_{\mathrm{m}}}$ is the prime-power factorization of the positive integer n , then show that :

$$
\begin{equation*}
\phi(\mathrm{n})=\mathrm{n}\left(1-\frac{1}{\mathrm{p}_{1}}\right)\left(1-\frac{1}{\mathrm{p}_{2}}\right) \ldots\left(1-\frac{1}{\mathrm{p}_{\mathrm{m}}}\right) \tag{4}
\end{equation*}
$$

(c) If $\mathrm{n}=\mathrm{p}_{1}^{\alpha_{1}} \mathrm{p}_{2}^{\alpha_{2}} \ldots \mathrm{p}_{\mathrm{m}}^{\alpha_{\mathrm{m}}}$, then prove that :

$$
\begin{equation*}
\tau(\mathrm{n})=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \ldots\left(\alpha_{\mathrm{m}}+1\right) \tag{3}
\end{equation*}
$$

9. (p) Prove that the möbius μ-function is multiplicative.
(r) If m and n are two positive relatively prime integer, then show that $\phi(\mathrm{m} \mathrm{n})=\phi(\mathrm{m}) \phi(\mathrm{n})$.
10. (a) If a and m are relatively prime positive integers and if a is a primitive root of m, then show that the integers $\mathrm{a}, \mathrm{a}^{2}, \ldots \mathrm{a}^{\phi(m)}$ form a reduced residue set modulo m . 4
(b) Solve the quadratic congruence $x^{2}+7 x+10 \equiv 0(\bmod 11)$. 3
(c) If p is a prime number and $\left.\right|_{(p-1)}$, then prove that the congruence $x^{d}-1 \equiv 0(\bmod p)$ has exactly d solutions.
11. (p) If p is an odd prime and a, b are integers with $(\mathrm{a}, \mathrm{p})=1=(\mathrm{b}, \mathrm{p})$ then prove that :
(i) $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{p}) \Rightarrow\left(\frac{\mathrm{a}}{\mathrm{p}}\right)=\left(\frac{\mathrm{b}}{\mathrm{p}}\right)$
(ii) $\left(\frac{\mathrm{a}}{\mathrm{p}}\right)\left(\frac{\mathrm{b}}{\mathrm{p}}\right)=\left(\frac{\mathrm{ab}}{\mathrm{p}}\right)$
(iii) $\left(\frac{\mathrm{a}^{2}}{\mathrm{p}}\right)=1$.
(q) If p is a odd prime and a is a primitive root of p such that $a^{p-1} \not \equiv 1\left(\bmod p^{2}\right)$, then show that for each positive integer $n \geq 2$

$$
\begin{equation*}
a^{p^{n-2}}(p-1) \not \equiv 1\left(\bmod p^{n}\right) \tag{5}
\end{equation*}
$$

B.Sc. (Part-II) Semester-III Examination MATHEMATICS (New)
 (Elementary Number Theory)
 Paper-VI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory. Attempt it at once only.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative ($\mathbf{1}$ mark each) :
(1) If $c>0$ is common divisor of a and b, then $\left(\frac{a}{c}, \frac{b}{c}\right)$ is equal to :
(a) $\frac{(a, b)}{c}$
(b) $\frac{[a, b]}{c}$
(c) $\frac{\mathrm{c}}{(\mathrm{a}, \mathrm{b})}$
(d) $\frac{c}{[a, b]}$
(2) The product of any m consecutive integers is divisible by :
(a) $(\mathrm{m}+1)$!
(b) $(\mathrm{m}-1)$!
(c) m !
(d) $\left(\frac{\mathrm{m}}{2}\right)$:
(3) If $x>0, y>0$ and $x-y$ is an even, then $\left(x^{2}-y^{2}\right)$ is divisible by :
(a) 3
(b) 4
(c) 5
(d) 7
(4) If $\mathrm{n}>2$ is a positive integer, then $1^{3}+2^{3}+\ldots \ldots+(\mathrm{n}-1)^{3} \equiv$
(a) $0(\bmod n)$
(b) $1(\bmod n)$
(c) $2(\bmod n)$
(d) None of these
(5) If $(a, b)=1$ then integers a and b are :
(a) Prime
(b) Relatively Primes
(c) Compositive
(d) None of these
(6) An integer ' r ' is root of $f(x)$ modulo p if :
(a) $\mathrm{f}(\mathrm{r}) \equiv 1(\bmod \mathrm{p})$
(b) $\mathrm{f}(\mathrm{r}) \equiv 0(\bmod \mathrm{p})$
(c) $\mathrm{f}(\mathrm{r}) \equiv 2(\bmod \mathrm{p})$
(d) $\mathrm{f}(\mathrm{r}) \equiv \mathrm{p}(\bmod 2)$
(7) The number of quadratic non residues modulo 23 is:
(a) 10
(b) 22
(c) 11
(d) 2
(8) The congruence $x^{n} \equiv 2(\bmod 13)$ has a solution for x if :
(a) $\mathrm{n}=5$
(b) $\mathrm{n}=7$
(c) $\mathrm{n}=6$
(d) $\mathrm{n}=8$
(9) If p is a quadratic residue of an odd prime q , then q is a :
(a) quadratic residue of p
(b) quadratic residue of q
(c) prime
(d) residue of p
(10) By Fermat's theorem when 8^{103} is divided by 103 , the remainder is :
(a) 103
(b) 8
(c) 9
(d) 10

UNIT-I

2. (a) If x and y are odd, prove that $x^{2}+y^{2}$ is not a perfect square. 4
(b) Prove that, if $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$, then $\mathrm{c} \mid(\mathrm{a}, \mathrm{b})$. 3
(c) Find the values of x and y to satisfy the equation $423 x+198 y=9$
3. (p) If $(\mathrm{a}, \mathrm{b})=1$, then prove that $(\mathrm{ac}, \mathrm{b})=(\mathrm{c}, \mathrm{b})$. 4
(q) For positive integers a and b, prove that:

$$
\begin{equation*}
(\mathrm{a}, \mathrm{~b})[\mathrm{a}, \mathrm{~b}]=\mathrm{ab} \tag{3}
\end{equation*}
$$

(r) Find:
(5325, 492). 3

UNIT-II

4. (a) Prove that every positive integer greater than one has at least one prime divisor. 4
(b) Prove that:

$$
\begin{equation*}
\left(a^{2}, b^{2}\right)=c^{2} \text { if }(a, b)=c \tag{3}
\end{equation*}
$$

(c) If P_{n} is the $\mathrm{n}^{\text {th }}$ prime number then show that:

$$
\begin{equation*}
P_{n} \leq 2^{2^{n-1}} \tag{3}
\end{equation*}
$$

5. (p) If m and n are distinct non-negative integers, then prove that $\left(\mathrm{F}_{\mathrm{m}}, \mathrm{F}_{\mathrm{n}}\right)=1$. 5
(q) Find the solution of the linear Diophantine equation :
$10 x+6 y=110$.

UNIT-III

6. (a) Prove that congruence is an equivalence relation.5
(b) Show that 41 divides $2^{20}-1$. 5
7. (p) Solve the system of three congruences $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$ and $x \equiv 2(\bmod 7)$. 5
(q) If f is a polynomial with integral coefficients and $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then prove that :

$$
f(a) \equiv f(b)(\bmod m)
$$

5

UNIT-IV

8. (a) If p is a prime and k is a positive integer, then prove that $\phi\left(\mathrm{p}^{\mathrm{k}}\right)=\mathrm{p}^{\mathrm{k}}\left(1-\frac{1}{\mathrm{p}}\right)$. 5
(b) If m is a positive integer and a is an integer with $(\mathrm{a}, \mathrm{m})=1$, then prove that:
$\mathrm{a}^{\phi(\mathrm{m})} \equiv 1(\bmod \mathrm{~m})$.
9. (p) Prove that Möbius μ-function is multiplicative.
(q) Find the value of $\phi(300)$. 3
(r) Find the value of $\tau(1800)$ and $\sigma(1800)$.

UNIT-V

10. (a) If $(a, m)=d>1$, then prove that m has no primitive root of a.5
(b) Prove that if r is a quadratic residue modulo $m>2$, then $r^{\phi(m) / 2} \equiv 1(\bmod m)$. 5
11. (p) Let a be an odd integer, then prove that $x^{2} \equiv a(\bmod 4)$ has a solution if and only if $a \equiv 1(\bmod 4)$.
(q) If $\mathrm{m}>2$ and $\mathrm{n}>2$ are the integers with $(\mathrm{m}, \mathrm{n})=1$, then prove that $\mathrm{m} n$ has no primitive roots.

B.Sc. Part-II (Semester-III) Examination MATHEMATICS (New) (Advanced Calculus)
 Paper-V

Time : Three Hours]

[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory, attempt once.
(2) Attempt ONE question from each unit.

1. Choose the correct alternative :
(i) If the limit of a sequence exists, the sequence is said to be \qquad .
(a) Unbounded
(b) Convergent
(c) Divergent
(d) Oscillatory
(ii) The sequence defined by $\mathrm{s}_{\mathrm{n}}=\frac{1}{\mathrm{n}+1}$ is bounded and \qquad .
(a) Monotone increasing
(b) Monotone decreasing
(c) Oscillatory
(d) None of these

1
(iii) Let $\sum a_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\ell, a_{n} \geq 0, \forall n$. Then $\sum a_{n}$ is convergent if:
(a) $\ell=1$
(b) $\ell<1$
(c) $\ell>1$
(d) $\quad \ell=0$
(iv) The series $x_{n}=\frac{1}{n^{2}+2}$ is:
(a) Convergent
(b) Divergent
(c) Oscillatory
(d) None of these
(v) If $\underset{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}{ } f(x, y) \neq f\left(x_{0}, y_{0}\right)$ then:
(a) f is continuous
(b) f is discontinuous
(c) function f fails to be continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(d) Both (b) and (c)
(vi) The neighbourhood $\mathrm{N}_{8}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)-\left\{\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right\}$ is called as :
(a) δ-nbd
(b) Rectangular nbd of $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(c) Deleted δ-nbd
(d) None of these
(vii) If $x=r \cos \theta y=r \sin \theta$ then Jacobian $J=\frac{\partial(x, y)}{\partial(r, \theta)}$ is :
(a) r
(b) $\frac{1}{r}$
(c) r^{2}
(d) $\frac{1}{\mathrm{r}^{2}}$
(viii) Let ($\mathrm{x}_{0}, \mathrm{y}_{0}$) be a critical point of a function of two variables which is defined in the open region $\mathrm{D} \subseteq \mathrm{R}^{2}$ and have continuous second order partial derivative in D . Then $\mathrm{rt}-\mathrm{s}^{2}=0 \Rightarrow$
(a) f has local maximum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(b) f has local minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(c) f has neither maximum nor minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$
(d) the test is inconclusive
(ix) In transforming double integral to polar co-ordinates we use $\mathrm{dxdy}=$
(a) $\operatorname{drd} \theta$
(b) $\operatorname{rdrd} \theta$
(c) $\frac{1}{\mathrm{r}} \mathrm{drd} \theta$
(d) $\frac{\mathrm{dr}}{\mathrm{d} \theta}$
(x) The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d x d y d z$ is:
(a) 1
(b) 0
(c) 2
(d) 3

UNIT-I

2. (a) Every convergent sequence of real numbers is a Cauchy Sequence. Prove this.
(b) Let $\left.<\mathrm{s}_{\mathrm{n}}\right\rangle$ be a sequence such that $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \mathrm{s}_{\mathrm{n}}=\ell$ and $\mathrm{s}_{\mathrm{n}} \geq 0 \forall \mathrm{n} \in \mathrm{N}$. Then prove $\ell \geq 0$.
(c) Show that the sequence $\left\langle s_{n}\right\rangle$ defined by $s_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}$ converges.
3. (p) Prove that a monotonic sequence of real numbers is convergent if and only if it is bounded.
(q) Evaluate $\operatorname{Lim}_{n \rightarrow \infty} s_{n}$ for $s_{n}=\sqrt{n+a}-\sqrt{n+b}, a \neq b$.
(r) Let $\left\langle x_{n}\right\rangle$ be a sequence of real numbers and for each $n \in N$. Let $s_{n}=x_{1}+x_{2}+\ldots+x_{n}$ and $t_{n} \stackrel{n}{=}\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$. Prove that if $<t_{n}>$ is a Cauchy sequence then $<s_{n}>$ is Cauchy sequence.

UNIT-II

4. (a) Show that $\sum \frac{1}{(2 n+1)^{3}}$ is convergent and $\sum \frac{1}{(2 n-1)^{1 / 2}}$ is divergent.
(b) Let $\sum_{n=1}^{\infty} a_{n}$ be a sequence of real numbers such that $\ell=\operatorname{Lim}_{n \rightarrow \infty} \sqrt[n]{a_{n}}, a_{n} \geq 0, \forall n$. Then prove that $\sum \mathrm{a}_{\mathrm{n}}$ is convergent if $\ell<1$.
(c) A series $\sum \mathrm{x}_{\mathrm{n}}$ of non-negative terms then prove that the sequence $<\mathrm{s}_{\mathrm{n}}>$ of partial sum is monotonic increasing.
5. (p) Show that an absolutely convergent series is convergent but its converse necessarily does not hold.
(q) Test the convergence of the serie: $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}, p>0$ by Cauchy's Integral Test. 4
(r) Test the convergence of $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots$

UNIT-III

6. (a) Let $f(x, y)$ be defined and continuous in the open region D and let $f\left(x_{1}, y_{1}\right)=z_{1}$, $f\left(x_{2}, y_{2}\right)=z_{2}, z_{1} \neq z_{2}$. Then for every number z_{0} between z_{1} and z_{2}, there is a point $\left(x_{0}, y_{0}\right)$ of D for which $f\left(x_{0}, y_{0}\right)=z_{0}$, prove this.
(b) Using $\in-\delta$ definition of a limit of a function, prove that $\underset{(x, y) \rightarrow(4,-1)}{\operatorname{Lim}}(3 x-2 y)=14$.
(c) Expand $f(x, y)=x^{2}-y^{2}+3 x y$ at the point $(1,2)$ by using Taylor's theorem.
7. (p) Let real valued functions f and g be continuous in an open set $D \subseteq R^{2}$. Then prove that $f+g$ is continuous in D.
(q) Let $f(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}, x^{2} y^{2}+(x-y)^{2} \neq 0$. Show that limit of the function f as $(x, y) \rightarrow(0,0)$ does not exist even though iterated limits are equal.
(r) Expand e^{xy} at the point $(2,1)$ up to first three terms.

UNIT-IV

8. (a) If $x u=y z, y v=x z, z w=x y$, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.
(b) Find the least distance of the origin from the plane $x-2 y+2 z=9$ by using Lagrange's method of multipliers.
(c) Find the extremum of $\sin \mathrm{A} \sin \mathrm{B} \sin \mathrm{C}$ subject to the condition $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$.
9. (p) Let $f(x, y)$ be defined in an open region D and it has a local maximum or local minimum at $\left(\mathrm{x}_{0} \mathrm{y}_{0}\right)$; if the partial derivative f_{x} and f_{y} exist at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, then $\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$ and $\mathrm{f}_{\mathrm{y}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0$. Prove this. 3
(q) If $x+y=2 e^{\theta} \cos \phi, x-y=2 \mathrm{ie}^{\theta} \sin \phi$, show that $\mathrm{JJ}^{\prime}=1$.
(r) Use the method of Lagrange multiplier to locate all local maxima and minima and also find the absolute maximum or minimum of $f(x, y)=x^{2}+y^{2}$, where $x^{4}+y^{4}=1$.

UNIT-V
10. (a) Evaluate $\iint_{S} \bar{F} \cdot \bar{n} d s$ where $\bar{F}=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ and S is surface of rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$ by Gauss-divergence theorem.
(b) Apply Stoke's theorem to evaluate $\oint_{c}[(x+y) d x+(2 x-z) d y+(y+z) d z]$, where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0),(0,0,6)$.
11. (p) Evaluate the Double integral $\int_{0}^{\log 8} \int_{0}^{\log y} e^{x+y} d x d y$.
(q) Change the order of $\iiint_{D} f(x, y) d x d y$, where D is bounded by parabolas $y^{2}=x$ and $x^{2}=y$. 3
(r) Evaluate $\int_{0}^{1} \int_{0}^{2(1-x)} \int_{0}^{2(1-x)-y} x^{2} y d z d y d x$.

 is

\qquad
ancoly
ancoly
\％ ，1（i）
Nomac privise 下ि．
$51+2$
 thata．coth sit
（－8）
 3natio gived 2 ？ 薷
drachut54idy㩆
is rexar of 部
8． 4
筑 道路
（9）
7

