(Contd.)

B.Sc. Part-I (Semester-II) Examination MATHEMATICS

(Differential Equations : Ordinary & Partial)

Paper-III

Tim	e : T	hree	Hours]		[Maximum Marks:	60
Not	e :—	(1)	Question No. 1 is compulsory. Solve	it ir	ONE attempt only.	
		(2)	Attempt ONE question from each ur	nit.		
1.	Cho	ose 1	he correct alternative:			
	(i)	The	roots of the equation $(D^2 - 4D + 13)$	$y^2y =$	0 are :	1
		(a)	distinct and real	(b)	real and equal	
		(c)	complex and repeated	(d)	None of these	
	(ii)	A li	near equation of first order is of the	form	Y' + PY = Q in which?	1
		(a)	P is function of Y			
		(b)	P and Q are function of X			
		(c)	P is function of X and Q is function	of Y	<i>(</i>	
		(d)	None of these			
	(iii)	The	condition for the partial differential equa	tion	f(x, y, z, p, q) = 0 and $g(x, y, z, p, q) =$	= 0
	25 37	859	e compatible is that:			1
		(a)	$J_{pp} + J_{yq} + PJ_{zp} + q.J_{zq} = 0$	(b)	$J_{xp} + J_{yq} + PJ_{zp} + q.J_{zq} = 0$	
		(c)	$J_{xp} + J_{qq} + PJ_{zp} + q.J_{zq} = 0$	(d)	None of these	
	(iv)	The	D.E. $\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{z}^2} - \frac{1}{\mathbf{c}^2} \frac{\partial^2 \mathbf{v}}{\partial \mathbf{t}^2} = 0$ is	s call	led:	1
		(a)	Partial differential equation	(b)	Ordinary differential equation	
		(c)	Total differential equation	(d)	Linear differential equation	
	(v)	An	equation of the form $Pp + Qq = R$ where	nere	P, Q, R are the functions of X, Y, Z	is
		calle	ed:			1
		(a)	Lagrange's equation	(b)	Jacobi's equation	
		(c)	Charpit's equation	(d)	Clairaut's equation	
	(vi)	The	particular solution of DE W" + PW'	+ Q	$W = 0 \text{ is } y = e^x \text{ iff } :$	1
		(a)	P + xQ = 0	(b)	1 + p + q = 0	
		(c)	1 - P + Q = 0	(d)	$m^2 + mP + Q = 0$	
	(vii)	The	solution of PDE $(D - mD')z = 0$ is :			1
		(a)	z = F(y + mx)	(b)	z = F'(y - mx)	

1

(d) None of these

(c) $z = F(e^{xy})$

YBC-15229

	(a) $F(x, y, z, p) = 0$	(b) $F(x, y, z, q) = 0$	
	(e) $F(x, y, z, p, q) = 0$	(d) $F(y, z, p, q) = 0$	
(ix)	The complete integral of $F(x, p) = G(y, q)$) is :	1
	(a) $z = \int h(x \ a) dx$	(b) $\int k(y \ a)dy$	
	(c) $z = \int h(x a)dx + \int k(y a)dy + b$	(d) None of these	
(x)	The DE $Mdx + Ndy = 0$ is exact iff:		1
	(a) $\frac{\partial M}{\partial x} = \frac{\partial M}{\partial y}$	(b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	
	(c) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$	(d) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	
	UNIT—	I	
(a)	Show that the D.E.:		
	$(\sin x \sin y - x e^y)dy = (e^y + \cos x)$	· cos y)dx	
	is exact and hence solve it.		5
(b)	Find the orthogonal trajectory of $r^n = a^n$	cos nθ.	5
(p)	Solve the D.E.:	,	
	$(1 + x^2)dy + 2xy dx = \cot x dx.$		5
(q)	Solve:		
	$xy - \frac{dy}{dx} = y^3 e^{-x^2}.$		5
	UNIT	П	
(a)	Solve the D.E. $(D^2 - 4)y = e^{2x}$.		5
(b)	Solve the D.E. $(x^2D^2 - 3xD + 5)y = x^2 s$	in(log x).	5
(p)	Solve the D.E. $(x^2D^2 - xD + 4)y = \cos(1 $	og x).	5
(q)	Solve the D.E. $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \sin^2 \theta$	2x.	5
	UNIT-	П	
(a)	Solve the system of D.E. : $D^2x - 2y = 0$	and $D^2y + 2x = 0$.	5
(b)	Solve the D.E. $y'' - y = \frac{2}{1 + e^x}$ by variation	on of parameter.	5

(viii) The general form of PDE of first order is :

2.

3.

4.

5.

6.

- 7. (p) Solve $x^2y'' + xy' + 10y = 0$ by changing the independent variable from x to $z = \log x$.
 - (q) Solve the following D.E. by removing the first derivative :

$$x \frac{d}{dx} (x \frac{dy}{dx} - y) - 2x \frac{dy}{dx} + 2y + x^2 y = 0$$
.

UNIT-IV

8. (a) Solve:

$$\frac{\mathrm{d}x}{\mathrm{x}(\mathrm{y}-\mathrm{z})} = \frac{\mathrm{d}y}{\mathrm{y}(\mathrm{z}-\mathrm{x})} = \frac{\mathrm{d}z}{\mathrm{z}(\mathrm{x}-\mathrm{y})} \,. \tag{5}$$

- (b) Find the complete integral of $z = p^2x + q^2y$.
- 9. (p) Find the general solution of PDE $x^2p + y^2q = (x + y)z$.
 - (q) Solve the PDE $p^2 + q^2 = k^2$. 5

UNIT-V

- 10. (a) Solve the D.E. $(D^2 + 3DD' + 2D'^2)z = x + y$.
 - (b) Solve by Charpits method pxy + pq + qy = yz.
- 11. (p) The PDE z = px + qy is compatible with any equation f(x, y, z, p, q) = 0 where f is homogeneous in x, y, z. Prove this.
 - (q) Find a real function v of x and y, reducing to zero when y = 0 and satisfying

$$\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} = -4\pi(\mathbf{x}^2 + \mathbf{y}^2).$$

(Contd.)

B. Sc. (Part-I) Semester—II Examination MATHEMATICS

(Vector Analysis and Solid Geometry)

Paper-IV

Tim	e : T	hree	Hours]		[Maximum Marks: 60
Note	e :—		Question No. 1 is compulsory; attempt Attempt one question from each unit.	it once o	nly.
1.	Cho	ose 1	the correct alternative :		
	(i)		hree vectors \vec{a} , \vec{b} , \vec{c} are coplanar, the third source is correct?	hen for s	scalar triple product, which of the
	¥ -	(a)	$\vec{b} \times \vec{c}$ is perpendicular to the vector	ā ·	
		(b)	$\vec{b} \times \vec{c}$ is parallel to the vector \vec{a}		
		(c)	$\vec{b} \times \vec{c}$ is equal to the vector \vec{a}		4
		(d)	None of these.		1
	(ii)	The	scalar triple product represents the ve	olume of	the
		(a)	rectangle	(b)	sphere
		(c)	parallelepiped	(d)	ellipse 1
	(iii)	The	curvature k is determined		
		(a)	only in magnitude	(b)	only in sign
		(c)	both in magnitude and sign	(d)	neither in magnitude nor sign 1
	(iv)	A p	lane determined by the tangent and	binormal	at $P(\vec{r})$ to the curve $\vec{r} = \vec{r}(s)$ is
		(a)	osculating plane	(b)	rectifying plane
		(c)	normal plane	(d)	none of these
	(v)	Whi	ch of the following quantity is define	d ?	, 1984 , 1984
		(a)	$\operatorname{div}\left(\operatorname{div}\vec{f}\right)$	(b)	curl (div f)
		(c)	grad (curl f)	(d)	grad $(div \vec{f})$
	(vi)	A v	ector f is solenoidal if		
		(a)	curl $\vec{f} = 0$	(b)	$div \vec{f} = 0$
		(c)	$grad \vec{f} = 0$	(d)	$\operatorname{grad}\left(\operatorname{div}\vec{\mathbf{f}}\right)=0$

YBC-15230

		(a) small circle	b)	imaginary circle	
		(c) great circle	d)	none of these	1
	(viii	The equations of the sphere and the plane taken	to	gether represent a	
		(a) sphere	b)	plane	
		(c) straight line (c	d)	circle	1
	(ix)	Every section of a right circular cone by a plan	e p	perpendicular to its axis is	
		(a) a sphere	b)	a cone	
		(c) a circle (d)	a cylinder	1
	(x)	The general equation of the cone passing through	h t	he coordinate axes is	
		(a) $fyz + gzx + hxy = 0$ (b)	yz + zx + xy = 0	
		(c) $ax^2 + by^2 + cz^2 = 0$	d)	$x^2 + y^2 + z^2 = 0$	1
		UNIT—I			
2.	(a)	Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplar	ana	r.	5
	(b)	If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c})$	= -	$(\frac{1}{2}\vec{b})$, find the angles which \vec{a} mak	es
		with \vec{b} and \vec{c} , \vec{b} and \vec{c} being non-parallel.			5
3.	(p)	If \vec{f} is a vector function of t and u is a scalar t	un	ction of t, then prove that:	
	26	$\frac{d}{dt}\left(u\vec{f}\right) = u\frac{d\vec{f}}{dt} + \frac{du}{dt}\vec{f}.$			5
	(q)	Evaluate $\int_{1}^{2} \vec{r} \times \frac{d^{2} \vec{r}}{dt^{2}} dt$, where			
		$\vec{\mathbf{r}}(\mathbf{t}) = 5\mathbf{t}^2 \ \vec{\mathbf{i}} + \mathbf{t} \ \vec{\mathbf{j}} - \mathbf{t}^3 \ \vec{\mathbf{k}}.$			5
		UNITII			
4.	(a)	Prove that helices are the only twisted curves w direction.	hos	se Darboux's vector has a consta	ınt 5
	(b)	For the curve $x = 3t$, $y = 3t^2$, $z = 2t^3$ at the point t plane, normal plane and rectifying plane.	=	1, find the equations for osculation	ng 5
5.	(p)	For the curve $x = a(3t - t^3)$, $y = 3at^2$, $z = a(3t + t^3)$ are equal.), s	show that the curvature and torsion	on 5
	(q)	If $\vec{t}' = \vec{d} \times \vec{t}$, $\vec{n}' = \vec{d} \times \vec{n}$, $\vec{b}' = \vec{d} \times \vec{b}$, then find the vect	or	$\vec{\mathbf{d}}$.	5

(vii) If the radius of the circle is equal to the radius of the sphere, the circle is called a _____.

UNIT-III

- 6. (a) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then show that $div(r^n \vec{r}) = (n+3)r^n$.
 - (b) Find the directional derivative of $\phi = xy^2 + yz^2$ at the point (2, -1, 1) in the direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$.
 - (c) If $\phi = 3x^2y y^3z^2$, find grad ϕ at the point (1, -2, -1).
- 7. (p) If $\vec{F} = (2x + y^2)\vec{i} + (3y 4x)\vec{j}$, evaluate $\int_{c}^{\vec{F} \cdot d\vec{r}}$ along the parabolic arc $y = x^2$ joining (0, 0) and (1, 1).
 - (q) Apply Green's theorem to prove that the area enclosed by a simple plane curve C is $\frac{1}{2}\int_{c}^{c}(xdy-ydx)$. Hence find the area of an ellipse whose semi-major and semi-minor axes are of lengths a and b.

UNIT-IV

- 8. (a) Find the equation of a sphere for which the circle $x^2 + y^2 + z^2 + 7y 2z + 2 = 0$, 2x + 3y + 4z = 8 is a great circle.
 - (b) Find the equation of the sphere circumscribing the tetrahedron whose faces are :

$$x = 0, y = 0, z = 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

- 9. (p) State and prove the condition for the orthogonality of two spheres. 1+4
 - (q) Find the coordinates of the centre and radius of the circle x + 2y + 2z = 15; $x^2 + y^2 + z^2 2y 4z = 11$.

UNIT-V

- 10. (a) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line x = -2y = z.
- 11. (p) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and the guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (q) Find the equation of the right circular cylinder of radius z whose axis passes through (1, 2, 3) and has direction cosines proportional to (2, -3, 6).

B.Sc. (Part-I) Semester-II Examination

2S: MATHEMATICS (New)

Differential Equation: Ordinary and Partial

Paper—III

Time: Three Hours] [Maximum Marks: 60 Note:—(1) Question No. 1 is compulsory. Solve it in one attempt only. (2) Attempt ONE question from each unit. Choose the correct alternative: (1) The integrating factor of the DE $\frac{dy}{dx} + 2xy = x$ is (a) x (b) ex (c) e^{x^2} . (2) The DE Mdx + Ndy = 0 is exact if (b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial v}$ (a) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$ (c) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (d) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (3) The degree of the DE $\frac{d^3y}{dx^3} = \sqrt[4]{4 + \left(\frac{dy}{dx}\right)^5}$ is (b) 2 (a) 1 (d) 4 (c) 3

(4) The primitive of the DE $\frac{d^2y}{dx^2} + 9y = 0$ is

(a)
$$y = c_1 \cos x + c_2 \sin x$$

(b) $y = c_1 \cos 3x + c_2 \sin 3x$

(c)
$$y = (c_1 + c_2 x) \cos 3x$$

(d) None of these

	(6)	The	value of $\frac{1}{f(D)}e^{ax}$, $f(a) \neq 0$ is given b	у	·····	
		(a)	$\frac{1}{f(D+a)}e^{ax}$	(b)	$\frac{1}{f(D-a)}e^{ax}$	
		(c)	$\frac{1}{f(a)}e^{ax}$	(d)	$\frac{1}{f(-a)}e^{ax}$	1
	(7)	The	general form of the First order PDE	is		
		(a)	f(x, y, z, p, q) = 0	(b)	f(x, y, p, q) = 0	
		(c)	f(x, z, p, q) = 0	(d)	f(z, p, q) = 0	1
	(8)	Lag	range's form of the PDE of order one	has	the form	
			$P_{p} - Q_{q} = R$		$P_{q} + Q_{p} = R$	
			$P_{p} + Q_{q} = R$		None of these	1
	(9)		general solution of the PDE F(D, D')Z =	0 consists of	
			C.F.		P.I.	
		(c)	C.F. and P.I.	(d)	None of these	1
	(10)	The	P.I. of the PDE $(D - D^{12})z = e^{2x-y}$ is			
		(a)	$\frac{1}{3}e^{2x-y}$	(b)	$\frac{1}{5}e^{2x-y}$	
		(c)	$-\frac{1}{3}e^{2x-y}$	(d)	e^{2x-y}	1
			UNIT	—I		
2.	(a)	Solv	we the DE $xy - \frac{dy}{dx} = y^3 e^{-x^2}$.			5
	(b)		w that the DE ($\sin x \cdot \sin y - xe^y$) dy =	(e ^y	+ cosx · cosy) dx is exact and hence sol	ve
2	(-)	it.	d DF 2-4-2			5
3.	(p)		we the DE $3x^4p^2 - xp - y = 0$.	!1	-6	5
	(q)		d the orthogonal trajectories of the far	niiy		5
JN	W24	1727	2		(Conto	1.)

(5) The particular solution of the DE y'' + Py' + Qy = 0 is y = x if

(a) P + Qx = 0(c) 1 - P + Q = 0 (b) 1 + P + Q = 0

(d) $m^2 + mP + Q = 0$

UNIT-II

4. (a) Solve the DE
$$y'' - 4y' + 4y = e^{2x} + \sin 2x$$
. 5

(b) Solve the DE $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-5x}$. 5

5. (p) Solve the DE $(x^2D^2 - xD + 4)y = \cos(\log x)$. 5

(q) Solve the DE $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \sin 2x$. 5

$$\frac{UNIT-III}{6}$$
6. (a) Solve the DE $x^2y'' - 3xy' + 3y = (2x + 1)x^2$. 5

(b) Solve the DE $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$ by putting $z = \sin x$. 5

7. (p) Solve the DE $y'' - y = \frac{2}{1 + e^x}$ by variation of parameters. 5

(q) Solve the simultaneous DEs $\frac{dx}{dt} + 7x - y = 0$, $\frac{dy}{dt} + 2x + 5y = 0$. 5

$$\frac{dx}{r} = \frac{dy}{y(z - x)} = \frac{dz}{z(x - y)}$$
. 5

(b) Solve : $\frac{dx}{x(y - z)} = \frac{dy}{y(z - x)} = \frac{dz}{z(x - y)}$. 5

(q) Solve the general integral of the PDE $z(xp - yq) = y^2 - x^2$. 5

(q) Solve : $z^2(1 + p^2 + q^2) = k^2$. 5

(h) Apply Charpit's method to solve $z^2 = pqxy$. 5

11. (p) Solve $r - 3s + 2t = e^{2x+3y} + \sin(x - 2y)$. 5

3

UNW-24727

(q) Solve $D(D - 2D' - 3)z = e^{x+2y}$.

B.Sc. (Part—I) Semester-II Examination MATHEMATICS (New)

Paper-III

(Differential Equations : Ordinary & Partial)

Time	e : T	hree	Hours]			[Maxim	um Marks : 60
N.B.	.:-	(1)	Question No. 1 is	s compulsory. S	olve it in (ONE attempt only.	ORT (UV)
		(2)	Attempt ONE qu	estion from eacl	n unit.	Lag sumah	
1.	Cho	ose t	he correct alternat	ive :		(d-,u-)1	
	(i)	The	DE $\frac{dy}{dx} + Py = Q$,	, where P and Q	are functi	ions of x is known as	(a) . 1
		(a)	Exact DE		(b)	Bernoulli's equation	
		(c)	Linear DE of ord	ler one	(d)	Homogeneous DE of ord	er one.
	(ii)	The	order of the DE	$\frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} - y$	$y \sin x = 0$) is 19 of to of the x	(a) ups.1 (a) 1
		(a)	1		(b)	2 9 9 9 9	
		(c)	3		(d)	4	
	(iii)	The	particular solutio	n of the DE y"	+ Py' + Q	$y = 0$ is $y = e^x$ if	on (x) 1
		(a)	P + xQ = 0		(b)	1 + P + Q = 0	(8)
		(c)	1 - P + Q = 0		(d)	$m^2 + mP + Q = 0$	3(3)
	(iv)	The	DE $y'' - 4y' + 4y$	y = 0 has roots	which are		1
		(a)	real and equal		(b)	real and different	ons (s) as
		(c)	complex		(d)	None of these	
	(v)	The	integrating factor	(IF) of the DE	$\frac{dy}{dx} + 2xy =$	= x is	2) \$ 1
		(a)	x		(b)	e ^x	
		(c)	ex2		(d)	e-x	
VIM-	-141				4 .		(Contd.)

	(vi)	The	value of $\frac{1}{f(D)}e^{ax}$, $f(a) \neq 0$ is given	en by	1
		(a)	$\frac{1}{f(D+a)}e^{ax}$	(b)	$\frac{1}{f(D-a)}e^{ax}$
		(c)	$\frac{1}{f(a)}e^{ax}$	(d)	$\frac{1}{f(-a)}e^{ax}$
	(vii)	The	correct value of $\frac{1}{f(D,D')}e^{ax+by}$ i	S	Photo college of the control of the
		(a)	$\frac{1}{f(-a,-b)}e^{ax+by}$	(b)	$\frac{1}{f(a,b)}e^{ax+by}$
		(e)	$\frac{1}{f(-a^2,-b^2)}e^{ax+by}$	(d)	None of these
	(viii)	In P	PDE $P_p + Q_q = R$, where P, Q and	R are fu	nctions of 1
			x only		y only
		(c)	x and y only	(d)	x, y and z
	(ix)	Lag	range's form of the PDE of order	one is	$x = \frac{\sqrt{2}}{2}$. If $x = 1$ is a street of $1 = (3) = 1$
		(a)	$P_p + Q_q = R$	(b)	$P_p - Q_q = R$
		(c)	$P_q + Q_p = R$	(d)	None of these
	(x)	The	solution of the PDE $r = a^2t$ is		. 1
		(a)	$z = F_1(y + ax) + F_2(y - ax)$	(b)	$z = F_1(y - ax) + F_2(y - ax)$
		(c)	z = F(y + ax)	(d)	None of these
			UN	II—I	Service Control Contro
2.	(a)	Sho	w that the DE $(e^y + 1) \cos x dx$	ey sin x	dy = 0 is exact and hence solve it. 5
	(b)	Solv	we the DE $\cos x dy = y(\sin x - y) dy$	x.	5
3.	(p)	Fino	I the orthogonal trajectories of the	family of c	coaxial circles $x^2 + y^2 + 2gx + c = 0$, where
		g is	a parameter.		To (N) - reading magnetical (v) 5
	(q)	Solv	we the DE $(p-xy)(p-x^2)(p-y^2) = 0$.		. 5

2.

UNIT—II

4.	(a)	Solve the DE $\frac{d^2y}{dx^2} + a^2y = x \cos ax$.	5
	(b)	Solve the DE $(x^2D^2 - 3xD + 5)y = x^2\sin(\log x)$.	5
5.		Solve the DE $y'' + 3y' + 2y = 4x - 20 \cos 2x$.	5
	(q)	Solve the DE $\frac{d^2y}{dx^2} + 4y = e^x + \sin 2x$.	5
		UNIT—III	
6.	(a)	Find the particular solution of $y'' - 2y' + y = 2x$ by variation of parameters.	5
	(b)	Solve the DE $\frac{d^2y}{dx^2} - \cot x \frac{dy}{dx} - y \sin^2 x = \cos x - \cos^3 x$ by changing the independent	variable
		x to z.	5
7.	(p)	Solve the simultaneous DEs.	
		$\frac{dx}{dt} + 2\frac{dy}{dt} - 2x + 2y = 3e^{t}; \ 3\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 4e^{2t}$	5
	(q)	Solve the DE $x^2y''-3xy'+3y = (2x+1)x^2$.	5
		UNIT—IV	
8.	(a)	Solve the PDE $x(y^2-z^2)p + y(z^2-x^2)q = z(x^2-y^2)$.	5
	(b)	Form the PDE by eliminating the arbitrary functions from $f(x + y + z, x^2 + y^2 + z)$	(2) = 0.
			. 5
9.	(p)	Solve the PDE $p^2 + q^2 = x^2 + y^2$.	5
	(q)	Solve the PDE	
		$\frac{dx}{y(y^2-z^2)} = \frac{dy}{-y(z^2+y^2)} = \frac{dz}{z(y^2+y^2)}.$	
		$x(y^2-z^2)^{-}-y(z^2+x^2)^{-}z(x^2+y^2)^{-}$	5
		UNIT—V	
10.	(a)	Solve the PDE $r + s - 6t = y \cos x$.	5
	(b)	Solve the PDE D(D $-2D'-3$) $z = e^{x+2y}$	5
11.	(p)	Solve the PDE $r - 3s + 2t = e^{2x+3y} + \sin(x-2y)$.	5
	(q)	Solve the PDE $(D^2-2DD'-8D'^2)z = \sqrt{2x+3y}$.	5
VTN	1—141	85	1050

$$\sin spb \times = \sqrt{s} + \frac{2^{n}b}{2^{n}b} + 2^{n}b + \sin s \cdot ded \quad (a)$$

(q) Solve the fit
$$\frac{d^2 V}{dx^2} + 4v \approx e^2 + 4\ln 2v$$

$$\frac{dx}{dt} + \frac{dy}{dt} = 2x + 2y = 4e^{ix} + \frac{dy}{dt} + \frac{2x + y}{dt} + 2x + y = 2e^{ix}$$

$$\frac{1}{(1+\frac{1}{2}x)^{\frac{1}{2}}} \frac{(6-\frac{1}{2}x)^{\frac{1}{2}}}{(1+\frac{1}{2}x)^{\frac{1}{2}}} \frac{(6-\frac{1}{2}x)^{\frac{1}{2}}}{(1+\frac{1}{2}x)^{\frac{1}{2}}}} \frac{(6-\frac{1}{2}x)^{\frac{1}{2}}}{(1+\frac{1}2x)^{\frac{1}{2}}}} \frac{(6-\frac{1}{2}x)^$$

$$X = 200 \text{ y} = 10 - 2 + 1 \text{ g}(10 \text{ gift} = r) r_0 r_0 - (0)$$

B.Sc. (Part—I) Semester-II Examination MATHEMATICS

(Differential Equations : Ordinary & Partial)

Paper-III

Time: Three Hours]

[Maximum Marks: 60

Note: -(1) Question No. 1 is compulsory and attempt it once only.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternative :

(1) The order of the D.E.
$$\left(\frac{d^3y}{dx^3}\right)^4 - \left(\frac{dy}{dx}\right)^5 - y = 0$$
 is:

(a) 1

(b) 2

(c) 3

(d) 4

(2) The particular solution of the D.E.
$$y'' + Py' + Qy = 0$$
 is $y = e^x$ if:

(a) P + xQ = 0

(b) 1 + P + Q = 0

(c) 1 - P + Q = 0

(d) $m^2 + Pm + Q = 0$

(3) The roots of the auxiliary equations of the D.E.
$$y'' - 5y' + 6y = 0$$
 are:

(a) Real and equal

(b) Complex

(c) Real and distinct

(d) None of these

1

(a)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$$

(b)
$$\frac{\partial \mathbf{M}}{\partial \mathbf{y}} = \frac{\partial \mathbf{N}}{\partial \mathbf{y}}$$

(c)
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

(d)
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

(5) The integrating factor of the D.E.
$$\frac{dy}{dx} - xy = x^2$$
 is:

(a) $e^{-x^2/2}$

(b) $e^{x^2/2}$

(c) e'

(d) e^{-x}

(6) The PI of
$$f(D)y = e^{ax}$$
 is given by :

- 1

(a)
$$\frac{1}{f(D+a)}e^x$$

(b)
$$\frac{1}{f(a)} e^x$$
; $f(a) \neq 0$

(c)
$$\frac{1}{f(D-a)}e^{ax}$$

(d)
$$\frac{1}{f(a)} e^{ax}$$
; $f(a) \neq 0$

		(c) $Pq + Qp = R$	(d) None of these	
	(8)	The solution of PDE $r = a^2t$ is :		1
		(a) $z = F_1(y + ax) + F_2(y - ax)$	(b) $z = F_1(y - ax) + F_2(y - ax)$	
		(c) $z = F(y + ax)$	(d) None of these	
	(9)	The general solution of the PDE F(D, D	y')z = 0 is consist of :	1
		(a) C.F. only	(b) P.I. only	
		(c) C.F. and P.I. both	(d) None of these	
	(10)	The P.I. of the PDE $(2D - 3D')z = e^{x-y}$	is:	1
			1	
		(a) $\frac{1}{5}e^{x-y}$	$(b) -\frac{1}{5}e^{x-y}$	
		(c) e^{x-y}	(d) -e ^{x y}	
		UNIT-	-I	
		$dy = 3 - x^2$		
2.	(a)	Solve the D.E. $xy - \frac{dy}{dx} = y^3 e^{-x^2}$.		5
	(b)	Show that D.E.:		
		$(e^y + 1) \cos x dx + e^y \sin y dy = 0$	is exact	
		and hence solve it.		5
3.	(p)		parabolas $y^2 = 4a(x + a)$ and show that t	he
		orthogonal trajectories of the system bel		5
	(q)	Solve the D.E. $(p - xy) (p - x^2) (p - y^2)$	*	5
		UNIT-		
4.	(a)	.To		5
	(b)		sin (log x).	5
3.		Solve the D.E. $y'' + 3y' + 2y = e^{5x}$. Solve the D.E. $y'' + 2y' + 2y = x^2$.		5
	(4)	UNIT—	ш	,
		š .		
6.	(a)	Solve the D.E. $y'' - y = \frac{2}{1 + e^x}$ by the me	ethod of variation of parameters.	5
	(b)	Solve the simultaneous DEs $\frac{dx}{dt} + 2\frac{dy}{dt}$	$2x + 2y = 3e^{t}$; $3\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = 4e^{2t}$.	5
7.	(p)	Solve the D.E. by changing the indepen	dent variable $x^6y'' + 3x^5y' + a^2y = \frac{1}{x^2}$.	5
	(q)	Solve the D.E. by reducing it to normal	form $y'' - 2xy' + (x^2 + 2)y = e^{(x^2 + 2x)/2}$.	5

2

(b) Pp - Qq = R

(7) Lagranges form of the PDE of order one is :

(a) Pp + Qq = R

WPZ-3326

1

(Contd.)

UNIT-IV

8. (a) Solve the PDE $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.

(b) Solve the PDE $p^2 + q^2 = x^2 + y^2$.

9. (p) Solve:

 $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}.$

(q) Solve the PDE $z^2(1 + p^2 + q^2) = k^2$.

UNIT-V

10. (a) Apply Charpit's method to solve $z^2 = pqxy$.

(b) Solve PDE $r - 3s + 2t = e^{2x + 3y} + \sin(x - 2y)$.

11. (p) Solve the PDE $D(D - 2D' - 3)z = e^{x+2y}$.

(q) Solve the PDE $r + s - 6t = y \cos x$.

.

B.Sc. (Part-I) Semester-II Examination

MATHEMATICS

Paper-IV

(Vector Analysis and Solid Geometry)

Time :	Three	Hours]			[Maximum Marks	: 60
N.B. :-	- (1)	Question No. 1 is compulsory.				
	(2)	Attempt one question from each t	ınit.			
1. Cl	hoose	the correct alternative:				
(i)	Tw	o non-zero vectors \overline{a} and \overline{b} are ort	hogo	nal iff		
	(a)	$\overline{a} \cdot \overline{b} = 0$	(b)	$\overline{a} \times \overline{b} = 0$		
	(c)	$\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$	(d)	$\overline{\mathbf{a}}\times\overline{\mathbf{b}}=-\ \overline{\mathbf{b}}\times\overline{\mathbf{a}}$		1
(ii)) Th	e dot product of any two non-zero	vecto	ors is a		
	(a)	Vector	(b)	Scalar		
	(c)	Both vector and scalar	(d)	None of these		1
(iii	i) Th	e equation of rectifying plane is				
	(a)	$(\overline{R} - \overline{r}).\overline{b} = 0$	(b)	$(\overline{R} - \overline{r}).\overline{t} = 0$		
	(c)	$(\overline{R} - \overline{r}).\overline{n} = 0$	(d)	None of these	*	1
(iv	v) A	line perpendicular to both \overline{b} and \overline{n}	is cal	lled		
	(a)	Tangent	(b)	Binormal		
	(c)	Principal normal	(d)	None of these		1
(v) A	vector \bar{f} is irrotational if		16		
	(a)	$div \bar{f} = 0$	(b)	$\operatorname{curl} \bar{f} = 0$		
	(c)	div grad $\bar{f} = 0$	(d)	curl grad $\bar{f} = 0$		1
VOX—3	35771		1		(C	Contd.)

	(vi)	If \bar{r}	$= x_i + y_j + z_k$ then div \bar{r} is equal	to_		
		(a)	Zero	(b)	One	
		(c)	Two	(d)	Three	1
	(vii)	The	curve of intersection of two spher	es is	a	
		(a)	Plane	(b)	Circle	
		(c)	Sphere	(d)	None of these	1
	(viii)	The	equation $x^2 + y^2 + z^2 + 4x - 6y$	+ 10	0z - 11 = 0 represents a sphere with centre	e
		(-2,	3, -5) then radius of sphere is _		e.	
		(a)	7	(b)	11	
		(c)	38	(d)	None of these	1
	(ix)	Eve	ry section of a right circular cone b	уар	plane perpendicular to its axis is a	
		(a)	Plane	(b)	Circle	
		(c)	Sphere	(d)	Cone	1
	(x)	The	equation $ax^2 + by^2 + cz^2 + 2ux +$	2vy	+ 2wz + d = 0 represent a cone if	
		(a)	$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$	(b)	$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} < d$	
		(c)	$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} > d$	(d)	$\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = 0$	1
			UN	IT–I		
2.	(a)	Prov	re that :			
			$(\overline{a} \times \overline{b}) \cdot [(\overline{b} \times \overline{c}) \times (\overline{c} \times \overline{a})] = [\overline{a} \ \overline{b} \ \overline{c}]$	2		1
	(b)	Prove	e that necessary and sufficient conditi	on fo	$r \ \overline{f}(t)$ to have constant magnitude is $\overline{f} \cdot \frac{d\overline{f}}{dt} = 0$	
				$\frac{r}{r} = \bar{\epsilon}$	$\overline{t} + \overline{b}$, given that both \overline{r} and $\frac{d\overline{r}}{dt}$ vanish when	
		t = (,		3	1
VOX-	3577	1		2	(Contd.))

3. (p) If $\bar{r} = a \cos t j + a \sin t j + at \tan \alpha k$, then find

$$|\dot{r} \times \ddot{r}|$$
 and $[\dot{r}, \ddot{r}, \ddot{r}]$

(q) If
$$\overline{A} = x^2yz \, \vec{i} - 2xz^3 \, \vec{j} + xz^2 \, \vec{k}$$
 and $\overline{B} = 2z \, \vec{i} + 4 \, \vec{j} - x^2 \, \vec{k}$, then find $\frac{\partial^2}{\partial x \partial y} \left(\overline{A} \times \overline{B} \right)$ at $(1, 0, -2)$

(r) Prove that
$$\vec{i} \times (\vec{a} \times \vec{i}) + \vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$$
.

UNIT-II

4. (a) For the curve $\bar{r} = \bar{r}(t)$, prove that

$$K = \frac{\left| \dot{\vec{r}} \times \ddot{\vec{r}} \right|}{\left| \dot{\vec{r}} \right|^3} \text{ and } T = \frac{\left| \dot{\vec{r}}, \ddot{\vec{r}}, \ddot{\vec{r}} \right|}{\left| \dot{\vec{r}} \times \ddot{\vec{r}} \right|^2}.$$

- (b) The parametric equations of a cycloid are $x = a(0 \sin \theta)$, $y = a(1 \cos \theta)$, then show that $\rho^2 = 8ay$.
- (c) Prove that:

$$(x''')^2 + (y''')^2 + (z''')^2 = \frac{1}{\rho^2 \sigma^2} + \frac{1 + {\rho'}^2}{\rho^4}$$

- (p) Find the curvature and torsion of the circular helix x = a cos θ, y = a sin θ, z = cθ at any point θ.
 - (q) Show that necessary and sufficient condition that a curve be a straight line is k = 0.
 - (r) If the tangent and binormal at a point of a curve make angles 0 and φ respectively with a fixed direction, then show that

$$\frac{\sin \theta \, d\theta}{\sin \phi \, d\phi} = \frac{-K}{T}$$

VOX-35771

UNIT-III

- 6. (a) If $\overline{F} = (3x^2 + 64)\overline{i} 14yz\overline{j} + 20xz^2\overline{k}$ then evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ from (0, 0, 0) to (1, 1, 1) along the path x = t, $y = t^2$, $z = t^3$.
 - (b) Find $\nabla \phi$, if $\phi = \frac{1}{2} \log (x^2 + y^2 + z^2)$.
 - (c) Find the work done in moving a particle once round the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, z = 0.
- 7. (p) Verify Green's theorem in the plane for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$.

where C is the boundary of the region R bounded by $y = \sqrt{x}$, $y = x^2$.

(q) Find the constants a, b, c so that $\vec{f} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.

UNIT-IV

- 8. (a) Find the equation of the sphere that passes through the circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0, 3x 4y + 5z 15 = 0 \text{ and cuts the sphere}$ $x^2 + y^2 + z^2 + 2x + 4y 6z + 11 = 0 \text{ orthogonally.}$
 - (b) Find the equation of the sphere which passes through the points (1, -3, 4), (1, -5, 2) and (1, -3, 0) and whose centre lies on the plane x + y + z = 0.
- 9. (p) Prove that the two spheres

$$x^{2} + y^{2} + z^{2} + 2u_{1}x + 2v_{1}y + 2w_{1}z + d_{1} = 0$$
and
$$x^{2} + y^{2} + z^{2} + 2u_{2}x + 2v_{2}y + 2w_{2}z + d_{2} = 0$$
will be orthogonal if
$$2u_{1}u_{2} + 2v_{1}v_{2} + 2w_{1}w_{2} = d_{1} + d_{2}$$
5

(q) Find the equation of a sphere which passes through origin and intercepts lengths a, b and c on the axes respectively.

UNIT-V

- 10. (a) Find the equation of a right circular cone whose vertex is (α, β, γ) , the semivertical angle α and the axis $\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$.
 - (b) Find the equation of right circular cone whose vertex is (2, −3, 5), axis makes equal angles with the coordinate axes and semivertical angle is 30°.
- 11. (p) Find the equation of the right circular cylinder whose radius is r and axis the line

$$\frac{\mathbf{x} - \mathbf{x'}}{\ell} = \frac{\mathbf{y} - \mathbf{y'}}{\mathbf{m}} = \frac{\mathbf{z} - \mathbf{z'}}{\mathbf{n}}$$

(q) Find the equation of right circular cylinder of radius 2 and whose axis is the line

$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}.$$

ar a

B.Sc. (Part—I) Semester—II Examination MATHEMATICS

(Vector Analysis and Solid Geometry)

Paper—IV

Tim	e: Th	ree l	Hour	s]				[Maximum Marks	: 60
	N.B.	. :	(1)	Question No. 1 i	s compulsory.				
			(2)	Attempt ONE qu	estion from eac	h unit	2 	20	
1.	Cho	ose c	orre	ct alternative :					
	(i)	The	cros	s product of any t	wo non-zero ve	ectors	is a:		
		(a)	Sca	lar		(b)	Vector		
		(c)	Bot	h Scalar and Vecto	or	(d)	None of these		1
	(ii)	Two	non	-zero vectors a a	nd \bar{b} are paralle	el iff :			
		(a)	ā·	$\overline{b} = 0$		(b)	$\overline{a} \times \overline{b} = 0$	= = = =	
		(c)	ā·	$\overline{b} = \overline{b} \cdot \overline{a}$	*	(d)	$\overline{a} \times \overline{b} = -\overline{b} \times \overline{a}$		1
	(iii)	The	equa	ation of osculating	plane is:				
		(a)	(R	$-\mathbf{r})\cdot\mathbf{\bar{t}}=0$		(b)	$(R-r)\cdot \overline{b}=0$		
		(c)	(R	$-\mathbf{r})\cdot\overline{\mathbf{n}}=0$		(d)	None of these		1
	(iv)	A li	ne pe	erpendicular to bo	th \bar{t} and \bar{n} is called	alled			
		(a)	tang	get line		(b)	binormal line		
		(c)	prin	cipal normal line		(d)	None of these		1
	(v)	A v	ector	\bar{f} is solenoidal if	. V				
		(a)	div	$\bar{\mathbf{f}} = 0$	**	(b)	$curl \ \bar{f} = 0$		
		(c)	div	$\bar{\mathbf{f}} \neq 0$		(d)	curl $\bar{f} \neq 0$		1
	(vi)	If r	$= x_i$	$+ y_j + z_k$, then d	liv r̄ is equal to	:		#6a	
		(a)	Zer	0		(b)	One	<i>*</i> .	
		(c)	Two)		(d)	Three		1
	(vii)	A p	lane	section of a spher	e is a:				
		(a)	Sph	iere		(b)	Circle		
		(c)	Bot	h Sphere and Circ	le	(d)	None of these		1
	(viii)	The	500		+ 2ux + 2vy +			its a real sphere if:	
	30	(a)	2.0350	$+ v^2 + w^2 = d$		1	$u^2 + v^2 + w^2 >$		23000
		(c)	u^2 -	$+ v^2 + w^2 < d$		(d)	$u^2 + v^2 + w^2 =$: 0	1

	(ix)	In Right Circular Cylinder, the radius of the circle is the radius of the:
		(a) Circle (b) Sphere
		(c) Cylinder (d) Cone
	(x)	Every section of a right circular cone by a plane perpendicular to its axis is a:
		(a) Plane (b) Circle
		(c) Sphere (d) Cone
		UNIT—I
2.	(a)	Prove that a necessary and sufficient condition that $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$ is
		$(\overline{\mathbf{a}} \times \overline{\mathbf{c}}) \times \overline{\mathbf{b}} = 0$.
		$a = a\overline{a}$
	(b)	If f and g are functions of x, y, z then prove that $\frac{\partial}{\partial x} (\bar{f} \cdot \bar{g}) = \bar{f} \cdot \frac{\partial \bar{g}}{\partial x} + \frac{\partial f}{\partial x} \cdot \bar{g}$.
	(c)	If $\vec{r}(t) = 5t^2\vec{i} + t\vec{j} - t^3\vec{k}$, then prove that $\int_0^2 \vec{r} \times \frac{d^2\vec{r}}{dt^2} dt = -14\vec{i} + 75\vec{j} - 15\vec{k}$.
	(0)	$\int_{1}^{\infty} \int_{1}^{\infty} dt^{2} dt = \int_{1}^{\infty} \int_{1}^{\infty} dt^{2}$
3.	(n)	If $\overline{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\overline{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\overline{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$, then prove that
٥.	(b)	
		$\overline{a} \cdot (\overline{b} \times \overline{c}) = \overline{b} \cdot (\overline{c} \times \overline{a}) = \overline{c} \cdot (\overline{a} \times \overline{b}).$
	(a)	If $\vec{f} = 2t^2\vec{i} - t\vec{j} + 2\vec{k}$, $\vec{g} = 7\vec{i} + t^2\vec{j} - t\vec{k}$, then find $\frac{d}{dt}(\vec{f} \times \vec{g})$.
	(4)	dt (t × g).
	(r)	Prove that :
		$(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{a}} \times \overline{\mathbf{c}}) \cdot \overline{\mathbf{d}} = (\overline{\mathbf{a}} \cdot \overline{\mathbf{d}}) [\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}].$
		UNIT—II
4.	(a)	Show that the Serret-Frenet formulae at a point can be written in the form
		$\bar{t}' = \bar{d} \times \bar{t}, \ \bar{n}' = \bar{d} \times \bar{n}, \ \bar{b}' = \bar{d} \times \bar{b} \text{ where } \bar{d} = \tau \bar{t} + k \bar{b} \text{ is a Darboux's vector.}$
	(b)	Prove that helices are the only twisted curves whose Darboux's vector has a constant
	0.0	direction.
5.	(p)	State and prove Serret-Frenet formulae.
	(q)	Find the equations of the tangent to the curve $x = 3t$, $y = 3t^2$, $z = 2t^3$ at the point $t = 1$
		3
	(r)	Find the curvature and torsion of the circular helix $x = a \cos \theta$, $y = a \sin \theta$, $z = c\theta$ at any point θ .
		UNIT—III
9	2 1	
6.	(a)	If $\overline{F} = (3x^2 + 6y)i - 14yzj + 20xz^2k$, then evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ from (0, 0, 0) to (1, 1, 1)
		along the path $x = t$, $y = t^2$, $z = t^3$.
	(b)	If $\bar{r} = xi + yj + zk$ then find:
	(0)	
		(i) grad r̄
		(ii) div. r
		(iii) curl \bar{r} .
WPZ33		27 2 (Contd.

- 7. (p) Verify Green's theorem in the plane for $\int_C (xy + y^2) dx + x^2 dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.
 - (q) If $\vec{f} = x^2 z \vec{i} 2y^3 z^2 \vec{j} + xy^2 z \vec{k}$, then find div \vec{f} and curl \vec{f} at (1, -1, 1).
 - (r) Find the work done in moving a particle once around a circle C in the xy plane of radius 2 and centre (0, 0) and if the force field is given by $f = 3xy\vec{i} y\vec{j} + 2zx\vec{k}$.

UNIT-IV

- 8. (a) Two spheres of radii r_1 and r_2 cut orthogonally. Prove that the radius of the common circle is $\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$.
 - (b) Find the equation to the sphere which passes through the points (0, 0, 0), (0, 1, -1), (-1, 2, 0) and (1, 2, 3).
- 9. (p) Show that the spheres:

$$x^{2} + y^{2} + z^{2} + 2x - 6y - 14z + 1 = 0$$
 and
 $x^{2} + y^{2} + z^{2} - 4x - 8y + 2z + 5 = 0$ are orthogonal.

(q) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3).

UNIT-V

- 10. (a) Find the equation of right circular cylinder which passes through the circle $x^2 + y^2 + z^2 = 9$, x y + z = 3.
 - (b) Find the equation of the right circular cylinder of radius 2 and whose axis is the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}.$
- 11. (p) Prove that the equation of a cone with vertex at the origin is homogeneous. 5
 - (q) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators touch the sphere $x^2 + y^2 + z^2 = a^2$.

B.Sc. (Part-I) Semester-II Examination **MATHEMATICS** (vii) A vector f is solenoidal if

Paper—IV

			(Vector Anal	ysis & S	olid Geometry)	$0 = \bar{\eta}$ wib (a)	
Time :	Three	Hours]	orl grad (= c	b (b)	0	[Maximum Ma	rks : 60
N.B. :-	-(1)				ttempt it once	Section .vlnc	
	(2)	Solve ONE	question from	each unit	•	(a) - plane	
1. Cho	oose (correct alterna	ative of the foll	owing :-		(c) sphere	
(i)	Thre	ee vectors a,	b, c are copla	ner iff _	$1 + z^2 + 2ux + $	The equation $x^1 + y$	
		$\overline{a} \times (\overline{b} \times \overline{c})$	= 0	(b)	$\bar{a} \cdot (\bar{b} \times \bar{c}) = 0$	$(a) u^2 + v^2 + w^2 =$	
	(c)	$(\overline{a} \times \overline{b}) \times \overline{c}$	$= \frac{1}{0}$	(d)	$(\overline{a} + \overline{b}) \times \overline{c} =$	$(c) u^2 + v^2 + v^2 = 0$ $(c) u^2 + v^2 + v^2 = 0$ $(c) u^2 + v^2 + v^2 = 0$ $(d) u^2 + v^2 + v^2 = 0$ $(e) u^2 + v^2 = 0$ $(e) $	1
(ii)	A v	ector f is irr	otational if			(a) plane	107
	(a)	$div \ \overline{f} = 0$	ircie	(b)	$div \ \bar{f} \neq 0$	(č) line	
	(c)	$curl \ \overline{f} = \overline{0}$			None of these		1
(iii)	If ī	$= t\vec{i} + \sin t \vec{j} +$	$(t^2-1)\vec{k}$, then	$\dot{\bar{\mathbf{r}}}$ at t =	0 is		
Λ	(a) (c)	(0, 0, 1) (1, 1, 0)	t, then prove t		(0, 1, 0) (1, 0, 1)	If vectors T and E	2. (a)
(iv)	For	any space cu	rve, $\vec{t}' \cdot \vec{b}' = $	·	ig a b gl	$\bar{f} = (\bar{g} \circ \bar{f}) \frac{b}{ab}$	
	(a) (c)	1.1	re unit vectors	(b)	LT.	Prove that $\vec{i} = \vec{n}$	(d) 1
(v)	If r						•
3	(a)	$\frac{\left[\dot{\bar{r}}\ \ddot{\bar{r}}\ \ddot{\bar{r}}\right]}{\left \dot{\bar{r}}\times\ddot{\bar{r}}\right ^{2}}$		(b)	$\frac{\dot{\mathbf{r}}}{\left \dot{\mathbf{r}}\right }$		
4	(c)	$\frac{\dot{\bar{r}} \times \ddot{\bar{r}}}{\left \dot{\bar{r}} \times \ddot{\bar{r}}\right }$	then find $\frac{u}{dt}$ (f	(d)	$\frac{\left \dot{\bar{r}}\times\dot{\bar{r}}\right }{\left \dot{\bar{r}}\right ^{3}}$	$10^{\circ} \vec{l} = 20^{\circ} \vec{l} - \vec{l} + 2\vec{k}$	(þ) 1
VTM_14	186						(Contd.)

	(vi) I	$f \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, then div. \vec{r} is			
		a) 3		-2	
				2 (1-fiel) 48.41	1
	(vii) A	A vector f is solenoidal if	· TSU	MAN.	
	(a) div. $\bar{f} = 0$ (gramma) follow	(b)	curl $\bar{f} = \bar{0}$	
	(c) div. grad $\bar{f} = 0$	(d)	curl grad $\bar{f} = \bar{0}$	1
	(viii) I	Every section of right circular cone	by a	plane perpendicular to its axis is	V,
	(a) plane	(b)	(2) Solve ONE question Palaria	
	(c) sphere	(d)	None of these	1
	(ix)	The equation $x^2 + y^2 + z^2 + 2ux + 2vy$	1 + 2	wz + d = 0 represent a real sphere if	
		(a) $u^2 + v^2 + w^2 = d$	(b)	$u^2 + v^2 + w^2 > d$	
	((c) $u^2 + v^2 + w^2 < d$	(d)	$\mathbf{u}^2 + \mathbf{v}^2 + \mathbf{w}^2 = 0$ $0 = 3 < (\mathbf{d} \times \mathbf{E}) (2)$	1
	(x) T	Two non-parallel planes intersect in			
	(a) plane	(b)	point li lenostatorii zi 1 10100v A. (ii)	
	(c) line		circle (a)	1
		i) None of these		(c) con (= 0	
		UN	IT-	(iii) If $T = ti + \sin t$) $+ (t' - t)k$, then	
2.	(a) I	f vectors \vec{f} and \vec{g} are vector function	ions	of t, then prove that	
		$\frac{\mathrm{d}}{\mathrm{d}t}(\overline{\mathbf{f}}\circ\overline{\mathbf{g}}) = \overline{\mathbf{f}}\circ\frac{\mathrm{d}\overline{\mathbf{g}}}{\mathrm{d}t} + \frac{\mathrm{d}\overline{\mathbf{f}}}{\mathrm{d}t}\circ\overline{\mathbf{g}}.$		(iv) For any space curve, 1, 5, =	3
	(b) I	Prove that $\bar{r} = \bar{a} e^{mt} + \bar{b} e^{nt}$, where \bar{a}	ā, b	are unit vectors is the solution of	
		$\frac{d^2\bar{r}}{dt^2} - (m+n)\frac{d\bar{r}}{dt} + mn\bar{r} = 0.$		[3 4 7] (n)	3
	(c) I	$f \overline{f} = 2t^2 \overline{i} - t \overline{j} + 2 \overline{k}$ and $\overline{g} = 7 \overline{i} + t^2 \overline{j}$	j – tk	, then find $\frac{d}{dt}(\overline{f} \times \overline{g})$.	4

3. (p)	Prove that :	
Prove	$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c}.$	4
	If $\overline{a} = t\vec{i} - 3\vec{j} + 2t\vec{k}$, $\overline{b} = \vec{i} - 2\vec{j} + 2\vec{k}$ and $\overline{c} = 3\vec{i} + t\vec{j} - \vec{k}$, then evaluate $\vec{a} \cdot (\overline{b} \times \overline{c})$.	3
(r)	Prove that : $(\overline{c} \times \overline{a}) \times (\overline{a} \times \overline{b}) = [\overline{a} \ \overline{b} \ \overline{c}] \overline{a}.$	3
	$(\mathbf{c} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b}) = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] \mathbf{a}$.	3
4. (a)	State and prove Frenet-Serret formulae.	-5
	If tangent and binormal at a point of a curve makes angle θ , ϕ respectively with fixed direction, then show that : $\frac{\sin\theta d\theta}{\sin\phi d\phi} = \frac{-k}{J}$	
5. (p)	Prove that $[\vec{r}'', \vec{r}''', \vec{r}''''] = k^3[kJ' - k'J]$.	3
(p)	20 Company of the Com	
(r)	Prove that Darboux vector $\overline{\mathbf{d}}$ has fixed direction if and only if k/J is constant. UNIT—III	4
6. (a)	Find the work done in moving a particle along the parabola $y^2 = x$ in the xy plane fro $(0, 0)$ to $(1, 1)$ if the force field is given by:	m
	$\vec{f} = (2x + y - 7z)\vec{i} + (7x - 2y + 2z^2)\vec{j} + (3x - 2y + 4z^3)\vec{k}.$	5
(b)	Verify Green's theorem in the plane for,	
nivertica	the of $\int_{c} (xy + y^2) dx + x^2 dy$; seed we show influence adapt a to not stope out built (g).	
2	Where c is the closed curve of the region bounded by $y = x$ and $y = x^2$.	5
7. (p)	If $\overline{F} = (3x^2 + 6y)\vec{i} - 14yz\vec{j} + 20xz^2\vec{k}$, then evaluate $\int_{0}^{\infty} \overline{F} \cdot d\overline{r}$ from $(0, 0, 0)$ to $(1, 1, 1)$	1)
	along the path $x = t$, $y = t^2$, $z = t^3$.	5
(q)	Prove that $r^n \bar{r}$ is irrotational. Find the value of n when it is solenoidal.	5
VTM—14	186 Contd	1.)

UNIT-IV

- 8. (a) A sphere of radius k passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.
 - (b) Prove that the two spheres

$$x^{2} + y^{2} + z^{2} + 2u_{1}x + 2v_{1}y + 2w_{1}z + d_{1} = 0$$
and
$$x^{2} + y^{2} + z^{2} + 2u_{2}x + 2v_{2}y + 2w_{2}z + d_{2} = 0$$
will be orthogonal if
$$2u_{1}u_{2} + 2v_{1}v_{2} + 2w_{1}w_{2} = d_{1} + d_{2}.$$

- 9. (p) Find the equation of the sphere that passes through the circle $x^2 + y^2 + z^2 2x + 3y 4z + 6 = 0$, 3x 4y + 5z 15 = 0 and cuts the sphere $x^2 + y^2 + z^2 + 2x + 4y 6z + 11 = 0$ orthogonally.
 - (q) Two spheres of radii r₁ and r₂ cut orthogonally. Prove that the radius of the common

circle is
$$\frac{r_1 r_2}{\sqrt{r_1^2 + r_2^2}}$$
.

UNIT-V

10. (a) Find the equation of the right circular cylinder of radius 2 and whose axis is the line

anothermore
$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$$
, only another spinor of another wave when the $\frac{z-3}{2} = \frac{z-3}{2}$.

(b) Find the equation of the right circular cylinder whose radius is r and axis the line :

$$\vec{l} = (2 + y - 7z)\vec{i} + (7x - 2y + 2z)\vec{j} + (3x - 2y + 4z)\vec{k}$$

$$\vec{l} = (2 + y - 7z)\vec{i} + (7x - 2y + 2z)\vec{j} + (3x - 2y + 4z)\vec{k}$$

$$\vec{l} = \frac{y - y}{m} = \frac{y - y}{m} = \frac{y - y}{n}.$$
(b) Verify Great's theorem in the plane for (b)

- 11. (p) Find the equation of a right circular cone whose vertex is (α, β, γ) , the semivertical angle α and the axis $\frac{x-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$.
 - (q) Find the equation of right circular cone whose vertex is (2, -3, 5), axis makes equal angles with the coordinate axes and semi vertical angle is 30°.

B.Sc. (Part-I) Semester-II Examination

2S: MATHEMATICS

Vector Analysis & Solid Geometry

Paper—IV

Гime : Т	hree	Hours]		[Maximum Marks: 60		
Note :—		Question No. 1 is compulsory and at Solve ONE question from each unit.	_	et it once only.		
1. Cho	ose t	the correct alternatives of the following	ıg :	e, e _s s _s		
(1)	Volu	ame of parallelepiped with $\overline{a}, \overline{b}, \overline{c}$ as	edge	vectors is:		
	(a)	$\overline{a} \times (\overline{b} \times \overline{c})$	(b)	$\overline{a}\cdot (\overline{b}\times \overline{c})$		
	(c)	$(\overline{a} \times \overline{b}) \times \overline{c}$	(d)	$(\overline{a} + \overline{b}) \times \overline{c}$		
(2)	Scal	ar triple product containing two repea	ited '	vectors is :		
	(a)	Less than zero	(b)	Equal to zero		
	(c)	Not equal to zero	(d)	Greater than zero		
(3)	The	curve of intersection of two spheres	is :	1		
	(a)	Circle	(b)	Point		
	(c)	Line	(d)	Plane		
(4) Every homogeneous equation of second degree in x, y and z, represent a _						
	vert	ex is at the origin.				
	(a)	Cone	(b)	Cylinder		
	(c)	Sphere	(d)	None of these		
(5)	A helix is a twisted curve whose tangent makes a constant angle with a:					
	(a)	Tangent	(b)	Plane		
	(c)	Fixed direction	(d)	Binormal		
(6)	The	plane which passes through $P(\overline{\epsilon})$ and	conta	ins binormal and tangent is said to be: 1		
	(a)	Osculating plane	(b)	Rectifying plane		
	(c)	Normal plane	(d)	None of these		
INW_24	728	. 1		(Contd.)		

(7)	If a	$\overline{\varepsilon} = \overline{\varepsilon}(t)$ is equation of space curve, the	nen cu	rvature is equal to :	1
(/)	11 6	, - c(t) is equation of space out to, in	ien eu	rature is equal to .	1
	(a)	$\frac{\left[\dot{\overline{\varepsilon}} \ddot{\overline{\varepsilon}} \ddot{\overline{\varepsilon}} \right]}{\left \dot{\overline{\varepsilon}} \times \ddot{\overline{\varepsilon}} \right ^2}$	(b)	$\frac{\dot{\bar{\epsilon}}}{ \dot{\bar{\epsilon}} }$	
	(c)	$\frac{\dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}}}{ \dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}} }$	(d)	$\frac{ \dot{\bar{\varepsilon}} \times \ddot{\bar{\varepsilon}} }{ \dot{\bar{\varepsilon}} ^3}$	

(8) If $\overline{\epsilon} = x\overline{i} + y\overline{j} + z\overline{k}$, then div $\overline{\epsilon} = 1$ (a) 3 (b) -2

(a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$

(9) A vector $\overline{\mathbf{f}}$ is said to be solenoidal if :

(a) div $\bar{f} = 0$ (b) curl $\bar{f} = 0$

(c) grad $\bar{f} = 0$ (d) $\nabla \cdot \nabla \bar{f} = 0$

(10) A necessary and sufficient condition for f(t) to have constant magnitude is:

(a) $|\bar{f}| = 0$ (b) $\bar{f} \cdot \frac{d\bar{f}}{dt} = 0$

(c) $\bar{f} \times \frac{d\bar{f}}{dt} = 0$ (d) None of these

UNIT-I

2. (a) Prove that:

$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c})\overline{b} - (\overline{a} \cdot \overline{b})\overline{c}$$
.

(b) Prove that:

$$[\bar{\ell}\,\overline{m}\,\bar{n}][\bar{a}\,\bar{b}\,\bar{c}] = \begin{vmatrix} \bar{\ell}\cdot\bar{a} & \bar{\ell}\cdot\bar{b} & \bar{\ell}\cdot\bar{c} \\ \overline{m}\cdot\bar{a} & \overline{m}\cdot\bar{b} & \overline{m}\cdot\bar{c} \\ \overline{n}\cdot\bar{a} & \overline{n}\cdot\bar{b} & \overline{n}\cdot\bar{c} \end{vmatrix}.$$

(c) If \overline{a} , \overline{b} , \overline{c} be three unit vectors such that $\overline{a} \times (\overline{b} \times \overline{c}) = \frac{\overline{b}}{2}$, find the angles which \overline{a} makes with \overline{b} and \overline{c} , \overline{b} and \overline{c} being non-parallel.

UNW-24728

3. (p) If \bar{f} and \bar{g} are vector functions of t, then prove that :

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\bar{\mathbf{f}} \times \overline{\mathbf{g}} \right) = \bar{\mathbf{f}} \times \frac{\mathrm{d}\overline{\mathbf{g}}}{\mathrm{dt}} + \frac{\mathrm{d}\overline{\mathbf{f}}}{\mathrm{dt}} \times \overline{\mathbf{g}} . \tag{4}$$

(q) If
$$\overline{a} = t\overline{i} - 3\overline{j} + 2t\overline{k}$$
, $\overline{b} = \overline{i} - 2\overline{j} + 2\overline{k}$ and $\overline{c} = 3\overline{i} + t\overline{j} - \overline{k}$, evaluate $\int_{1}^{2} \overline{a} \cdot (\overline{b} \times \overline{c}) dt$.

(r) If
$$\bar{\epsilon} = a \cot \bar{i} + a \sin \bar{j} + a \tan \alpha \bar{k}$$
, find $|\dot{\bar{\epsilon}} \times \ddot{\bar{\epsilon}}|$ and $|\dot{\bar{\epsilon}} \times \ddot{\bar{\epsilon}}|$.

UNIT-II

- (a) Prove that necessary and sufficient condition that a curve be helix is that ratio of torsion to curvature is constant.
 - (b) Prove that the position vector of the current point on a curve satisfies the differential equation:

$$\frac{d}{ds}\left(\sigma\frac{d}{ds}\left(\rho\,\overline{\epsilon}^{11}\right) + \frac{d}{ds}\left(\frac{\sigma}{\rho}\,\overline{\epsilon}^{1}\right) + \frac{\rho}{\sigma}\,\overline{\epsilon}^{11} = 0\right).$$

- 5. (p) State and prove Serret-Frenet formulae.
 - (q) For a point of the curve of intersection of the surfaces $x^2 y^2 = c^2$, $y = x \tan h(z/c)$, prove that $\rho = -6 = 2x^2/c$.

UNIT—III

- 6. (a) Find a unit normal to the surface $xy^2 + 2yz = 4$ at the point (-2, 2, 3).
 - (b) If $\phi = 3x^2y y^3z^2$, find grad ϕ at the point (1, -2, -1).
 - (c) A vector field is given by $\overline{F} = \sin y \, \overline{i} + x(1 + \cos y) \, \overline{j}$. Evaluate the line integral over the circular path $x^2 + y^2 = a^2$, z = 0.
- 7. (p) Find the work done in moving a particle in a force field given by $\overline{F} = 2xy\overline{i} + 3z\overline{j} 6x\overline{k}$ along the curve $x = t^2 + 1$, y = t, $z = t^3$ from t = 0 to t = 1.

(q) Let R be a closed bounded region in the xy-plane whose boundary is a simple closed curve c which may be cut by any line parallel to the coordinate axes in at most two points. Let M(xy) and N(xy) be functions that are continuous and have continuous partial derivatives

$$\frac{\partial M}{\partial y}$$
 and $\frac{\partial N}{\partial x}$ in R. Then prove that :

$$\iint\limits_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy = \int\limits_{C} (M \, dx + N \, dy)$$

where C is traversed in the positive direction.

UNIT-IV

- 8. (a) Prove that the two spheres $x^2 + y^2 + z^2 + 2u_1x + 2v_1y + 2w_1z + d_1 = 0$ and $x^2 + y^2 + z^2 + 2u_2x + 2v_2y + 2w_2z + d_2 = 0$ will be orthogonal if $2u_1u_2 + 2v_1v_2 + 2w_1w_2 = d_1 + d_2$.
 - (b) A sphere of radius K passes through the origin and meets the axes in A, B, C. Prove that the centroid of the triangle ABC lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.
- 9. (p) Find the coordinates of the centre and radius of the circle:

$$x + 2y + 2z = 15$$
, $x^2 + y^2 + z^2 - 2y - 4z = 11$.

(q) Find the equation of two spheres which pass through the circle $x^2 + y^2 + z^2 = 5$, x + 2y + 3z = 3 and touch 4x + 3y - 15 = 0.

UNIT-V

- 10. (a) Find the equation to the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and the guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (b) Find the equation of the right circular cylinder of radius 4, whose axis passes through the origin and makes equal angles with the co-ordinate axes.
 5
- (p) Prove that every homogeneous equation of second degree in x, y and z represents a cone whose vertex is at the origin.
 - (q) Find the equation of right circular cone whose vertical angle is 90° and its axis is along the line x = -2y = z.