(Contd.)

B.Sc. (Part-I) Semester-II Examination

2S: ELECTRONICS

(Digital Electronics)

Time : T	hree l	Hours]	[Maximum Marks: 80
N.B. :-	(1)	All questions are compulsory.	
	(2)	Draw neat sketches wherever necessary.	
1. (A)	Fill	in the blanks:	
	(i)	The Boolean equation of AND gate is y =	. 1/2
	(ii)	The Base of Decimal number system is	1/2
	(iii)	PIPO is parallel in out shift Register.	1/2
	(iv)	EPROM stands for Programmable Read Only Memo	ry. ½
(B)	Cho		
	(i)	1's complement of 0011 is:	
		(a) 1111 (b) 1101	
		(c) 1110 (d) 1100	1/2
	(ii)	The Boolean equation of OR gate is:	
		(a) A+B (b) A.B	
		(c) $\overline{A.B}$ (d) $\overline{A+B}$	1/2
	(iii)	RAM and ROM are called	
	70	(a) Semi conductor memory (b) Auxiliary memory	
39		(c) Magnetic memory (d) None of the above	1/2

1

VOX-35787

		(iv)	In I	O flip flop D stands for					
			(a)	Diode	(b)	Du	al		
			(c)	Delay	(d)	No	one	1/2	
	(C)	Ans	wer	in one sentence :					
		(i)	Stat	te different types of flip	flops.		*	1	
		(ii)	Wh	at is multiplexer?				1	
		(iii)	Wh	at is counter?				1	
		(iv)	Wh	at is Base of a Number	System?			1	
	EIT	HER	t,						
2.	(A)	Perf	orm	the following conversion	ns: *				
		(i)	(110	$(001)_2 = (x)_{10}$					
		(ii)	(10	$10.101)_2 = (x)_{10}$					
		(iii)	(32)	$)_{10} = (x)_2$				6	
	(B)	Giv	e log	ic symbol, Boolean equ	ation and t	ruth	table of NOT, AND, OR gates.	6	
	OR			(i)					
	(P)	Explain the working of 4-Bit Binary adder.							
	(Q)	Dra	wal	ogic symbol, Boolean e	quation and	l tru	th table of XOR gate. Explain its	s working 6	
	EIT	HER	1						
3.	(A)	State and prove De' Morgan's Theorems.							
	(B)	Explain the working of CMOS NAND gate.							
	OR								
	(P)	What is K-map? Draw a K-map for 2, 3 and 4 input variables.							
	(Q)	Explain the working of DTL NAND gate.							
	EIT	HER	2						
4.	(A)	Dra	w the	e circuit diagram of cloc	ked RS flip	flo	p and explain its working.	6	
	(B)	Dra	w a n	neat circuit diagram of A	stable mult	ivib	rator and explain its working.	6	

2

(Contd.)

VOX-35787

	OR		
	(P)	Explain construction and working of monostable multivibrator.	6
	(Q)	Explain the working of JK flip flop with truth table.	6
	EIT	HER	
5.	(A)	Explain the working of Ring counter.	6
	(B)	What is Shift Register? Explain working of SISO Shift Register.	6
	OR		
	(P)	Explain the working of 4-Bit Ripple counter.	6
	(Q)	Explain PIPO Shift Register.	6
	EIT	HER	
6.	(A)	Draw a neat circuit diagram of 4:1 multiplexer and explain its working.	6
	(B)	Explain the working of BCD to decimal decoder.	6
	OR		
	(P)	Explain the working of 1:4 Demultiplexer.	6
	(Q)	Explain the working of decimal to BCD Encoder.	6
	EIT	HER	
7.	(A)	Explain primary and secondary memories with suitable examples.	6
	(B)	Explain the concept of memory Hierarchy.	6
	OR		÷
	(P)	What are different types of magnetic memories? State its advantages and disadvantage	s.
			6
	(Q)	What is volatile and non-volatile memory? Give examples of each.	6

8

.