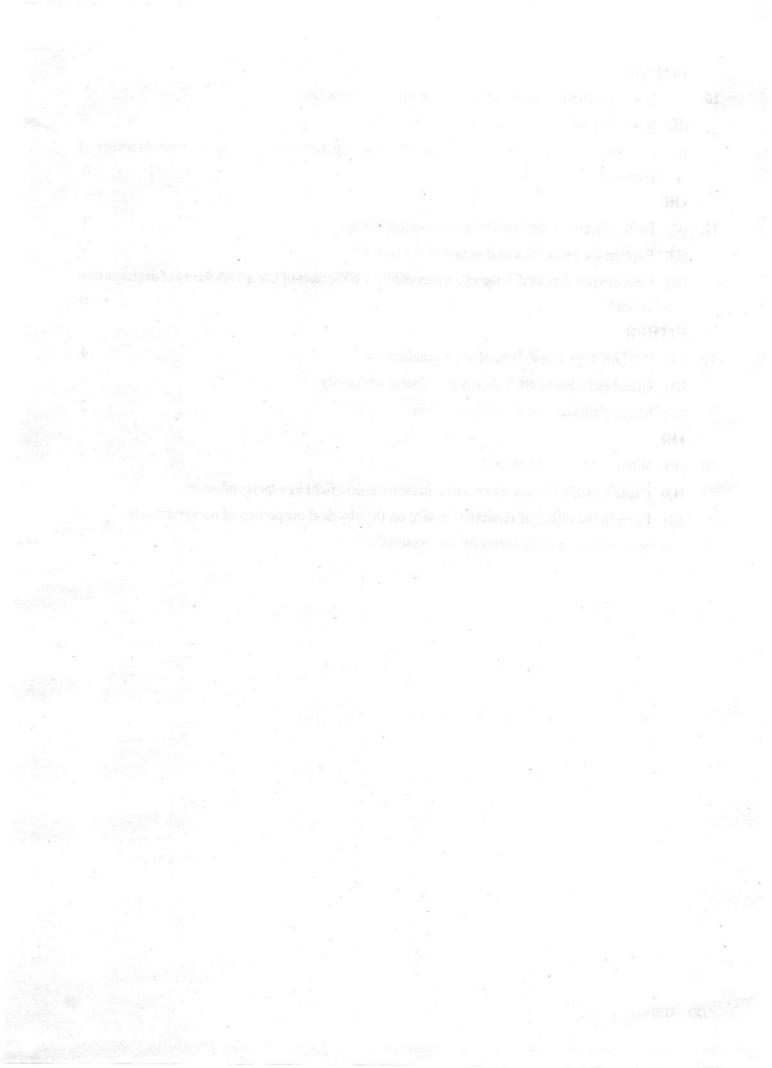
B.Sc. (Part—III) Semester—VI Examination chaory astrophony to moderate b M and m 6S-PHYSICS and are 1 doubted than 31-M parts ()

(Statistical Mechanics and Solid State Physics)

[Maximum Marks : 80 Time : Three Hours] Note :-- (1) All questions are compulsory. (2) Draw neat and well labelled diagrams wherever necessary. 2 (A) Fill in the blanks :--The SI unit of conductivity is ______ and a start group of the world (3) (i) (ii) Colour of nanoparticle changes with _____ of the nanoparticles. (iii) There are _____ Bravais lattices. (iv) A combination of ______ and momentum space is known as phase space. 2 (B) Choose the correct alternative :--(i) The coordination number of Simple Cubic (SC) crystal is : (b) eight (a) six abiles entitienter box of (d) twelve (c) ten (ii) Pauli's exclusion principle is applicable to : (b) B-E Statistics (a) M-B Statistics (d) Both (c) F-D Statistics (iii) The unit of magnetic susceptibility is : _______ (a) Ampere/m (b) Henry/m (c) Weber (d) No unit (iv) Type-I superconductor exists in : (b) Three States (a) Two States (c) Four States (d) Five States 4 (C) Answer the following in one sentence :--What are "quantum dots"? (i) (ii) Define magnetisation. (iii) Define Fermi energy. (iv) What is microstate ? (Q) Derive an appression for closer usi conductivity in pena of mean free path o RHHTH in a 2 (A) State the principle of equal Priori Probability. (B) Explain unit cell. To share add no totaluzza bas totaluzza bas atomas is near delogatized (3). 2 8 (C) Derive an equation for Boltzmann Entropy relation.


2.

1.

	OR		
3	8. (P) What are Microstate and Macrostate ?		
	(Q) Using M-B distribution Law, derive an expression for M-B distribution of molecular	4 sneeds	
	and hence show that most probable velocity of molecule is $V_p = \sqrt{\frac{2KT}{m}}$.	6	
	(R) Explain concept of phase space.	2	
	EITHER	ataM	
4.	(-) Lispital distinguisitable dia indistinguiscophe porticion	2	
	(B) Derive F-D distribution law.	7	
	(C) Show that the energy levels above the Fermi level are empty and below the Fermi level occupied at absolute zero.	el are	
	OR	3	
5.	(P) What are Bosons ? State the properties of Bosons.		
	(Q) Using BE distribution law, derive Planck's law of blackbody radiation.	4	
	(R) State conditions of applicability of F-D Statistics.	6	
	EITHER	2	
6.	(A) Distinguish between amorphous solids and crystalline solids.	4	
	(B) Derive Bragg's Law for X-ray diffraction.	4	
	(C) Explain Schottky defects in the crystal.	4	
7	OR (hoE (h)		
7.	(P) What are plane defects ? Explain grain boundaries and stacking faults.	5	
	(Q) Explain X-ray diffraction method to determine lattice parameter of crystal.	4	
	(R) Find the Miller Indices of the crystal plane having intercepts at a, 3b and ∞ on x, y z axes respectively.		
	EITHER	3	
8.	(A) Explain the motion of electrons in metal and hence derive an expression for drift velocit electrons.		
	(B) State and explain Bloch theorem.	4	
	(C) Explain insulator on the basis of band theory of solid.	5	
	OR OR	3	
9.	(P) Explain formation of conduction band, valence band and energy gap in solids.	4	
	(Q) Derive an expression for electrical conductivity in terms of mean free path of electrons i	4 in a	
	inclai.	5 5	
	(R) Distinguish metal, semiconductor and insulator on the basis of Band theory of solids.	3	

,

	EIT	HER	
10.	(A)	What is magnetic permeability ? State Curie-Weiss law.	2
	(B)	State the properties of paramagnetic materials.	4
	(C)	State the failures of Langevin's theory of paramagnetism and hence give quantum the	ory of
		paramagnetism.	6
	OR		
11.	(P)	Define magnetization and magnetic susceptibility.	2
	(Q)	Explain the properties of diamagnetic material.	4
	(R)	Derive expression for diamagnetic susceptitibility on the basis of Langevin's theory of diamag	netism
		in brief.	6
	EIT	HER	
12.	(A)	Explain Type I and Type II superconductors.	4
	(B)	Give brief idea of BCS theory of Superconductivity.	6
	(C)	State applications of superconductors.	2
	OR		
13.	(P)	What is Meissner Effect ?	1
	(Q)	Explain critical temperature and critical magnetic field in superconductor.	3
	(R)	Explain the effect of reduction in size on the physical properties of nanomaterials.	4
		State different applications of nanomaterials.	4

