(Contd.)

B.Sc. (Part-I) (Semester-I) Examination **MATHEMATICS**

(Algebra & Trigonometry)

					Pa	per—	-I			
Tin	ne : I	Three	Hou	rs]				[N	laximum M	farks : 60
	Not	te :	-(1)	Question C	ONE is compuls	ory. A	Attempt once.			
			(2)	Attempt O	NE question fro	m ea	ch Unit.			
1.	Cho	ose	the co	orrect altern	ative :—					
	(1)	Wh	ich o	ne of the fo	ollowing stateme	ents is	s true :—			. 10
		(a)	cosh	$\mathbf{n}(\mathbf{x} + \mathbf{i}\mathbf{y}) = 0$	coshx·cosy + is	inhx	siny		-	
		(b)	cosh	n(x + iy) = 0	cosx cosy + isin	ıx sir	ny			
		(c)	cosh	(x + iy) =	coshx + cosy -	- isinl	hx·siny			×
		(d)	cosh	$\mathbf{n}(\mathbf{x} + \mathbf{i}\mathbf{y}) = \mathbf{c}$	oshx siny + isi	nhx c	osy			
	(2)	Wha	at is	the value of	f sinh-lx :					
			8.	$\left[x + \sqrt{x^2 + 1}\right]$	17	(b)	$\log \left[x + \sqrt{x^2 - x^2} \right]$	1		
		(c)	log	$x + \sqrt{1-x^2}$		(d)	None of these	e		
	(3)	The	valu	e of 4tan ⁻¹	$\frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{70}$	$1^{-1} \frac{1}{99}$	is			,
		(a)	$\pi/2$			(b)	$\pi/4$			
		(c)	$\pi/3$			(d)	π			
	(4)	Sun	of t	he series x	$-\frac{x^2}{2} + \frac{x^3}{3} - \dots +$	(-1) ⁿ	$+i\frac{x^n}{n}+; -1$	< x < 1 is	denoted b	у
		(a)	log(1 + x		(b)	sinhx			
		(c)	cosh	ıx		(d)	ex			
	(5)	If q	= 2	+ 2i - j + 4	k then the norm	of q	is			
		(a)				(b)				
		(c)			E Company		None of these	e		
	(6)				quaternion is its					18
		(a)		ely imaginar			Purely real			
	(7)			plex conjug	28 J		None of these		.1	•
	(7)				of quadratic po			nen its a	notner root	1S
		7090 90	α – β	тр		(q)	None of these	•		
	(8)	(c)	•	are the roo	ots of the equati	50 (5)			en Sa is	
	(0)	II W	, p, 1	are the roc	ots of the equali	on p.	x + qx + 1x +	3 - 0 th	CII 20 13 _	•
		(a)	$\frac{q}{p}$			(b)	$-\frac{q}{p}$		~,	
		(c)	r			(d)	$\frac{s}{p}$	*		
			Р				P			

1

YBC-15193

	(9)	If A and B are the non-signular matrices of order n then	
		(a) $(AB)^{-1} = AB$ (b) $(AB)^{-1} = \overline{A}^{1} \cdot \overline{B}^{1}$	
		(c) $(AB)^{-1} = \overline{B}^{1} \cdot \overline{A}^{1}$ (b) None of these	
	(10)	'Every square matrix satisfies its own characteristics equation' is the statement	of
		(a) Lagrange's MVT (b) De-Moivre's theorem	
		(c) Cayley-Hamilton theorem (d) Cauchy's MVT UNIT—I	
2.	(a)	Prove that $\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}=\sin\theta+i\cos\theta.$	
	,	Hence prove that $\left(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5}\right)+i\left((1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5}\right)=0.$	5
	(b)	If $\sin(\alpha + i\beta) = x + iy$ then prove that $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$ and $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$	5
3.	(p)	Prove that one of the value of:	
		$(\cos\theta + i\sin\theta)^n$ is $(\cos n\theta + i\sin n\theta)$; when n is negative integer.	5
	(q)	Separate real and imaginary parts of tan (x + iy). UNIT—II	5
4.	(a)	Find the Sum of the series :	
		$C = 1 + e^{\sin x} \cdot \cos(\cos x) + \frac{1}{2!} e^{2\sin x} \cdot \cos(2\cos x) + e^{3\sin x} \cdot \frac{1}{3!} \cos(3\cos x) + \dots$	5
	(b)	Prove that $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{\pi}{4}$.	5
5.	(p)	Find the sum of the series $\sinh x + \frac{1}{2!} \sinh 2x + \frac{1}{3!} \sinh 3x + \dots$	5
	(q)	If $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ then prove that	
		$x = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x + \dots + (-1)^{n-1} \frac{1}{2n-1} \tan^{2n-1} x + \dots$	5
		UNIT—III	
6.	(a)	Prove that for p, $q \in H$, $N(pq) = N(p) N(q)$ and $N(q^*) = N(q)$.	5
	(b)	For the quaternion $q = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ and the input vector $v = i$, compute the output	put
		vector w under the action of the operators L_q and L_{q^*} .	5
7.	(p)	Show that the quaternian product need not be commutative.	5
	(q)	For any p, $q \in H$, show that $pq = qp$ if and only if p and q are parallel.	5

2

(Contd.)

YBC-15193

UNIT-IV

- 8. (a) Find the roots of the equation, $8x^3 + 18x^2 27x 27 = 0$, if these roots are in geometric progression.
 - (b) State Descartes rule of sign. Find the nature of the roots of the equation $2x^7 x^4 + 4x^3 5 = 0$.
- 9. (p) Prove that in an equation with real coefficients complex roots occur in pairs. 5
 - (q) Solve the equation $x^4 2x^3 22x^2 + 62x 15 = 0$; given that $2\sqrt{3}$ is one of the root.

UNIT-V

- 10. (a) Show that if λ is the eigen value of a nonsingular matrix A then λ^{-1} is the eigen value of A^{1} .
 - (b) Find the eigen values and the corresponding eigen vector for smallest eigen value of

the matrix
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
.

- 11. (p) Show that the eigen values of any square matrix A and A' are same.
 - (q) Reduce to canonical form and find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$. 5

B.Sc. Part-I (Semester-I) Examination

MATHEMATICS

(Differential & Integral Calculus)

Paper-II

Time: Three Hours]

[Maximum Marks: 60

Note: (1) Question No. 1 is compulsory. Attempt once.

- (2) Attempt ONE question from each unit.
- 1. Choose the correct alternatives (1 mark each):

10

- (i) The value of $\lim_{x\to 0} \frac{\sin x}{x}$ is:
 - (a) 0

(b) 1

(c) ∞

(d) None of these

- (ii) If $y = e^{-2x}$, then y_{11} is:
 - (a) $-2^{11} e^{-2x}$

(b) $2^{11} e^{-2x}$

(c) $-2^{11} e^{2x}$

(d) None of these

(iii) The series:

$$x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

is the expansion of function:

(a) sin x

(b) sinh x

(c) cos x

(d) cosh x

- (iv) $|x-x_0| < \delta$ represents:
 - (a) $x_0 \delta < x < x_0 + \delta$

(b) $x_0 + \delta < x < x_0 - \delta$

(c) $x_0 - \delta \le x < x_0 + \delta$

- (d) $x_0 \delta < x \le x_0 + \delta$
- (v) If f be differentiable on (a, b) and f'(x) = 0, $\forall x \in [a, b]$, then f(x) is :
 - (a) Monotonic increasing in [a, b]
- (b) Monotonic decreasing in [a, b]

(c) Constant in [a, b]

- (d) None of these
- (vi) For $f(x) = x^2$; in [1, 3] then the value of 'C' by Lagrange's mean value theorem is :
 - (a) $\frac{6}{13}$

(b) 2

(c) 0

(d) 1

(vii) The area bounded by the	curve $x = g(y)$; y-axis and $y = a$, $y = b$ is :
(a) $\int_{a}^{b} y dx$	(b) $\int_{a}^{b} x dy$

- (viii) The functions f and g be:
 - (i) continuous in [a, b]
 - (ii) derivable in (a, b) and
 - (iii) $g'(x) \neq 0$ for all $x \in (a, b)$.

These are the hypothesis of mean value theorem by :

(a) Rolle's

(c) $\int_{0}^{b} y^{2} dx$

(b) Lagrange's

(c) Cauchy's

(d) Leibnitz

(d) $\int_{a}^{b} x^2 dy$

- (ix) The function f(x) has the removable discontinuity if:
 - (a) $f(x^+) \neq f(x^-)$

- (b) $f(x^{+}) = f(x^{-}) \neq f(x)$
- (c) $f(x^+)$, $f(x^-)$ do not exist
- (d) None of these

- (x) $\frac{d}{dx} \cosh x \text{ is } :$
 - (a) sinh x

(b) -sinh x

(c) h sinh x

(d) -h sinh x

UNIT-I

2. (a) If $\lim_{x\to x_0} f(x) = \ell$ and $\lim_{x\to x_0} g(x) = m$, then prove that :

$$\lim_{x\to x_0} [f(x)+g(x)] = \lim_{x\to x_0} f(x) + \lim_{x\to x_0} g(x)$$

$$=\ell+m$$
.

- (b) Prove that the function defined by $f(x) = x^2$ is continuous for all $x \in R$.
- (c) Using definition of limit, prove that:

$$\lim_{x \to 3} \frac{x^3 - 2x^2 - x - 6}{x - 3} = 14$$

- (p) Define limit of a function and show that the limit of a function if it exist, is unique.
 - (q) Prove that $\lim_{x\to 2} x^2 = 4$; by using $\in -\delta$ definition.

(r) If
$$f(x) = \frac{e^{1/x}}{1 + e^{1/x}}, x \neq 0$$
,
= 0, , $x = 0$

then show that f(x) has a simple discontinuity at x = 0.

3

UNIT—II

- (a) Prove that if f(x) is differentiable at $x = x_0$, then it is continuous at $x = x_0$. Is converse 5 of this statement true? Justify.
 - (b) Evaluate:

$$\lim_{x \to 0} (\cos x)^{\cot^2 x}.$$

- (c) If $y = A \sin mx + B \cos mx$, then prove that $y_2 + m^2y = 0$. 2
- (p) If $y = \sin(m \sin^{-1} x)$, then show that : 5.
 - (i) $(1 x^2)y_2 xy_1 + m^2y = 0$

(ii)
$$(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (n^2 - m^2)y_n = 0.$$
 5

(q) If
$$y = \frac{1}{ax + b}$$
, then prove that $y_n = \frac{(-1)^n n! a^n}{(ax + b)^{n+1}}$.

(r) Evaluate:

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}.$$

UNIT-III

- (a) State and prove Lagrange's mean value theorem.
- 4
 - (b) Verify Cauchy mean value theorem for the functions:

$$f(x) = e^x \text{ and } g(x) = e^{-x} \text{ in } [a, b].$$

- (c) Expand sin x in powers of $x \frac{\pi}{2}$, upto first four terms. 3
- (p) State and prove Cauchy's mean value theorem. 4 7.
 - (q) Expand $3x^3 + 4x^2 + 5x 3$ about the point x = 1 by Taylor's theorem. 3
 - (r) Verify the Rolle's theorem for the function:

$$f(x) = \frac{\sin x}{e^x} \operatorname{in}[0, \pi].$$

UNIT-IV

(a) If u = f(x, y, z) is a homogeneous function of degree n, then show that : 8.

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = nu.$$

(Contd.) YBC-15194 3

(b) Verify Euler's theorem for
$$u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$
.

(c) If
$$u = e^x (x \cos y - y \sin y)$$
, then find the value $u_{xx} + u_{yy}$.

- 9. (p) If u = f(x, y) be homogeneous function of degree n then prove that:
 - (i) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ are homogeneous functions of degree 'n 1' in x, y and

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = n(n-1)u$$
.

(q) If $u = 3(ax + by + cz)^2 - (x^2 + y^2 + z^2)$ and $a^2 + b^2 + c^2 = 1$, then show that :

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{z}^2} = 0.$$

(r) If $u = \log \frac{x^4 - y^4}{x - y}$, $x \ne y$, then prove that:

(i)
$$x u_x + y u_y = 3$$

(ii)
$$x^2u_{xx} + 2xy u_{xy} + y^2 u_{yy} = -3$$
.

UNIT-V

10. (a) Prove that:

$$\int \sin^{m} x \cos^{n} x \, dx = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} \int \sin^{m} x \cos^{n-2} x \, dx.$$

(b) Evaluate:

$$\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}} \, dx$$

- (c) Show that '8a' is the length of an arc of the cycloid $x = a(t \sin t)$, $y = a(1 \cos t)$; $0 \le t \le 2\pi$.
- 11. (p) Prove that :

$$\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - I_{n-2}.$$

Hence evaluate $\int \tan^3 x \, dx$.

- (q) Find the area bounded by the x-axis, the curve $y = c \cosh \frac{x}{c}$ and the ordinates x = 0, x = a.
- (r) Show that length of the curve $y = \log \sec x$ between the points, where x = 0 and

$$x = \frac{\pi}{3} \text{ is } \log_e(2 + \sqrt{3}).$$

YBC-15194

[Maximum Marks: 60

B.Sc. (Part-I) Semester-I Examination MATHEMATICS

(New Course)

(Algebra and Trigonometry)

Paper—I

Time: Three Hours]

Note	e :		Question No. 1 is compulsory. Attempt ONE question from each	unit.	a a	
1.	Cho	ose t	he correct alternative :			
	(i)	The	value of (cos θ - i sin θ) ⁻ⁿ is :			1
		(a)	$\cos n\theta + i \sin n\theta$	(b)	$cos\ n\theta-i\ sin\ n\theta$	
		(c)	$\sin n\theta + i \cos n\theta$	(d)	$sin\ n\theta-i\ cos\ n\theta$	
	(ii)	The	value of sin(iz) is:			1
		(a)	sinh z	(b)	i sinh z	
		(c)	i sin z	(d)	sin z	
	(iii)	If x	$-n\pi = \tan x - \frac{1}{3} \tan^3 x + \dots$, then the	e value	e of n when x lies between	$-\frac{3\pi}{4}$ and $-\frac{5\pi}{4}$
		is:				1
		(a)	1	(b)	-1	
		(c)	0	(d)	None of these	
	(iv)	The	value of $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$ is :			1
		(a)	π	(b)	$\frac{\pi}{2}$	
o i		(c)	$\frac{\pi}{3}$	(d)	$\frac{\pi}{4}$	18 10
vox	.—352	253	. 1		<i>3</i>	(Contd.)

(v)	Har	milton product $\vec{i} \ \vec{j} \ \vec{k} = \dots$			1
	(a)	1	(b)	-1	
	(c)	0	(d)	None of these	
(vi)	If f	is selection function, $f(2+3\vec{i}+\vec{j}-\vec{k})$	=		1
	(a)	2	(b)	3	
	(c)	1	(d)	-1	
(vii) Eve	ery equation of degree n has:		*	1
	(a)	n roots	(b)	more than n roots	
	(c)	less than n roots	(d)	None of these	
(viii) The	e Descartes rule of signs does not tell	abou	it the :	1
	(a)	Positive root of equation	(b)	Negative root of equation	
	(c)	Zero root of equation	(d)	None of these	
(ix)	Ele	mentary transformations :			1
	(a)	affect the rank of a matrix			
	(b)	do not affect the rank of matrix			
	(c)	have the different rank of a matrix			
	(d)	None of these			
(x)	An	$n\text{-square matrix } A \text{ has rank } r \leq n \text{ iff }$:		1
	(a)	det (A) = 0	(b)	$det (A) \neq 0$	
	(c)	$\det(A) = \infty$	(d)	None of these	
		UNIT-	·I		
(a)	Ву	using DeMoivre's theorem, find all the	e fo	urth root of 81.	5
(b)	Ifα	and β are the roots of the equation x^2-	2x +	$4 = 0$, prove that $\alpha^n + \beta^n = z^{n+1} \cdot \cos \frac{n}{2}$	$\frac{\pi}{3}$
					5

VOX-35253

2.

(Contd.)

3. (p) If sin(θ + iφ) = cos α + i sin α, prove that : cos²θ = ± sin α.
(q) Separate into real and imaginary parts of tan(x + iy).
UNIT—II
4. (a) Prove that :

$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{\pi}{4}.$$

5

(b) Sum the series:

$$\sinh x + \frac{1}{2!} \sinh 2x + \frac{1}{3!} \sinh 3x + \dots$$
 6

5. (p) If $x < \sqrt{2} - 1$ then prove that :

$$2\left(x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \dots\right) = \frac{2x}{1 - x^2} - \frac{1}{3}\left(\frac{2x}{1 - x^2}\right)^2 + \frac{1}{5}\left(\frac{2x}{1 - x^2}\right)^3.$$

(q) Sum the series:

$$a\cos x - \frac{1}{3}a^3\cos(x+2y) + \frac{1}{5}a^5\cos(x+4y) - \dots$$

UNIT-III

- 6. (a) Show that quaternian product need not be commutative.
 - (b) Prove that for p, $q \in H$, N(pq) = N(p) N(q) and $N(q^*) = N(q)$.
 - (c) Show that the quaternian product of two vectors \vec{r} and \vec{s} is given by $\vec{r}\vec{s} = \vec{r} \times \vec{s} \vec{r} \cdot \vec{s}$.
- 7. (p) If $Lq(\vec{v}) = q \vec{v} q^*$, then prove that $f(Lq(\vec{v})) = 0$ and hence show that $Lq(\vec{v}) \in \mathbb{R}^3$.
 - (q) If q is a unit quarterian and $\vec{v} = k\vec{q}$, where $k \in R$, then show that the output vector $\vec{w} = Lq(\vec{v}) = k\vec{q}$.
 - (r) Write the quaternian inverse for $q = a \cos \theta b \vec{u} \sin \theta$.

VOX—35253 3 (Contd.)

UNIT-IV

8. (a) Solve by Cardon's method $x^3 - 15x = 126$.

5

(b) Solve the equation $x^3 - 12x^2 + 39x - 28 = 0$, roots being in A.P.

5

- 9. (p) State Descartes' rule of sign. Find the nature of the roots of the equation $2x^7 x^4 + 4x^3 5 = 0$.
 - (q) Solve the equation $x^4 10x^3 + 35x^2 50x + 24 = 0$.

5

UNIT-V

- 10. (a) Reduce the matrix $A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ to the normal form and then find its rank. 5
 - (b) Prove that the eigenvalues of a Hermitian matrix are all real.

5

- 11. (p) State Cayley-Hamilton theorem. Verify it for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. 1+4
 - (q) Find the eigenvalues and the corresponding eigenvectors of the matrix :

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

B.Sc. (Part-I) (Semester-I) Examination **MATHEMATICS**

(Algebra and Trigonometry)

			Pap	er—I			
Tim	e : Tl	hree	Hours]		[M	aximum Marks: 6	0
	N.B	. :-	- (1) Question No. 1 is compulsor	y and attem	pt it once only.		
			(2) Attempt ONE question from	each unit.			
1.	Cho	ose 1	the correct alternative :				
	(i)	The	e period of sinh z is:				
		(a)	2πί	(b)	πί		
			π.				
		(c)	$\frac{\pi}{2}$ i	(d)	i		
	(ii)	The	e value of $e^{-\frac{\pi}{2}i}$ is:				
10.50		(a)	-i	(b)	1 + i		
		(c)	1 - i	(d)	0		l
	(iii)	The	e series $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{5}$	$\frac{1}{99} = \frac{\pi}{4} \text{ is ca}$	ılled :		
		(a)	Gregory's series	(b)	Euler's series		
		(c)	Rutherford's series	(d)	Machiri's series	1	
	(iv)	The	e sum of infinite Geometric series	$a + ar + ar^2$	+ ar^{n-1} +	, $ \mathbf{r} < 1$ is:	
		(a)	$\frac{d}{1-r}$	(b)	$\frac{r}{1-r}$		
		(c)	$\frac{r}{a-r}$	(d)	.1		l
	(v)	The	e norm of quaternion $q = 2 + 2\vec{i} - \vec{j}$	$+4\vec{k}$ is:			
		(a)	2	(b)	9	20	
		(c)	4	(d)	5	1	1
	(vi)	For	any quaternion q, its inverse is equ	ial to:	2		
		(a)	-q	(b)	q*		
		(c)	-q*	(d)	None of these	1	1
	(vii)	The	e polynomial of fourth degree is call	ed as:			
		(a)	Linear	(b)	Quadratic		
		(c)	Biquadratic	(d)	Cubic		l

	(viii)	The degree of an equation having roots (5 + 1) is .	
20		(a) 1 (b) 2	
		(c) 3 (d) 4	1
	(ix)	The rank of zero matrix is:	
		(a) 1 (b) 0	
		(c) n (d) None of these	1
	(x)	The number of positive and negative roots of an equation of degree n is found by:	
		(a) Cardan's Method (b) Ferrari's Method	
		(c) Descartes' rule of signs (d) None of these	1
		UNITI	
2.	(a)	State DeMoivre's theorem and prove it for positive integer.	-4
	(b)	Prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos\left(\frac{n\pi}{4}\right)$, where n being positive integer.	5
3.	(p)	Separate the following expression into real and imaginary parts: (i) $\sinh(x + iy)$	
		(ii) $\tan (x + iy)$.	4
	(q)	Find all the value of $(-1)^{1/3}$.	3
	(r)		3
		UNIT—II	
4.	(a)	If $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$, then prove that:	
		$x = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x + \dots + (-1)^{n-1} \frac{\tan^{2n-1} x}{2n-1} + \dots$	5
	(b)	Sum the series :	
		$S = a \sin x + \frac{1}{2}a^2 \sin 2x + \frac{1}{3}a^3 \sin 3x + \dots$	5
5.	(p)	Prove that:	
	(q)	$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3} \cdot \frac{1}{2^3} + \frac{1}{5} \cdot \frac{1}{2^5} + \dots + \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} \dots$ Sum the series:	5
		$a \sin x - \frac{1}{3} a^3 \sin 3x + \frac{1}{5} a^3 \sin 5x - \dots$	5
		UNITIII	
6.	(a)	If $p = 2 - 3\vec{i} - 4\vec{j} + 5\vec{k}$ and $q = -6 + \vec{i} + 2\vec{j} - 3\vec{k}$, then find the quaternion product positive	q. 4
	(b)	Show that:	ा
		$pq = qp \Leftrightarrow \overline{p} \text{ and } \overline{q} \text{ are parallel, for some } p, q \in H.$	4
	(c)	Prove that quaternion product $\vec{i} \cdot \vec{j} = \vec{k}$.	2

7. (p) Let q is any unit quaternion, then prove that:

$$Lq(\vec{v}) = \vec{w} = (q_0 - |\vec{q}|^2)\vec{v} + 2(\vec{q} \cdot \vec{v})\vec{q} + 2q_0(\vec{q} \times \vec{v})$$

(q) If the quaternion $q = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ and input vector $\overline{v} = i$, then compute the output vector \vec{w} under the action of operator Lq.

UNIT-IV

- 8. (a) Find the equation whose roots are the roots of equation $x^4 5x^3 + 7x^2 17x + 11 = 0$ each diminished by 4.
 - (b) If the roots of the equation $x^3 + ax^2 + bx + c = 0$ are in G.P. Prove that $a^3c = b^3$.
 - (c) Find the equation whose roots are the reciprocals of $x^4 3x^3 + 7x^2 + 5x 2 = 0$.
- 9. (p) Solve the equation $x^3 21x = 344$ by Cardan's method.
 - (q) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the values of :
 - (i) $\Sigma \alpha^2$
 - (ii) $\Sigma \alpha^2 \beta$.
 - (r) Show that the equation $2x^7 x^4 + 4x^3 5 = 0$ has at least four complex roots.

UNIT-V

10. (a) Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$$
.

(b) Verify Cayley-Hamilton theorem for matrix A:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}.$$

- 11. (p) Find the row rank and column rank of a matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 0 & 5 \end{bmatrix}$.
 - (q) Show that the eigen values of Hermitian matrix are all real.

***** ¥

.

B.Sc. (Part-I) Semester-I Examination MATHEMATICS (New) Paper-I

(Algebra and Trigonometry)

Time: Three Hours]

[Maximum Marks: 60

Note: -(1) Question No. 1 is compulsory and attempt it once only.

- (2) Attempt ONE question from each unit.
- Choose the correct alternative :-1.
 - (i) If i, 1 + i are the roots of $x^4 2x^3 + 3x^2 2x + 2 = 0$ then remaining roots are:

(a) -i, 1-i

(b) -i, i-1

(c) i, 1-i

(d) -i, -1-i

(ii) The real part of sin (x + iy) is:

(a) $\sin x \cdot \cosh y$

(b) cos x· sinh y

(c) sin x · sinh y

(d) cos x · cosh y

The series $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$ is called as:

(a) Euler's series

(b) Gregory's series

(c) Rutherford series

(d) Geometric series.

(iv) If $\theta - n\pi = \tan \theta - \frac{1}{3} \tan^3 \theta + \frac{1}{5} \tan^5 \theta$ then the values of n when θ lies between

 $\frac{19\pi}{4}$ & $\frac{21\pi}{4}$ is:

(a) n = 4

(b) n = -4

(c) n = 5

(d) n = -5

VTM-13323

(Contd.)

(v)	The unit quaternion has:			
	(a) Both real and vector part one			
	(b) Both real and vector part zero	0		
	(c) real part one and vector part	zero		
	(d) None of these.			. 1
(vi)	The norm of quaternion $q = 2 + 2\vec{i}$	$-\vec{j}+4\vec{k}$	is:	
	(a) 5	(b)	4	
	(c) 2	(d)	9	1
(vii)	The number of positive and negati	ve roots	of an equation of degree n is found by:	
	(a) Cardon's method	(b)	Ferrari's method	
	(c) Descarte's rule of signs	(d)	None of these	1
(viii)	An equation of four degree is calle	ed as:	EXT of a transfer A page of 1 a 21 - (i)	
	(a) Linear	(b)	Quadratic	
	(c) Cubic	(d)	Biquadratic	1
(ix)	The rank of a zero matrix is:			
	(a) 1	(b)	0	
	(c) n	(d)	None of these	1
(x)	If the matrix is n-square identity m	atrix the	n its rank is:	
	(a) n	(b)	1	
	(c) 0	(d)	None of these	1
		UNIT-	I	
(a)	State DeMoivre's theorem and pro-	ve it for	positive integer.	1+4
(b)	Find n, nth roots of unity and show	w that th	ey form a series in G.P.	5
(p)	Prove that $\cosh^{-1} x = \log \left[x + \sqrt{x^2 - x^2} \right]$	ī].	Application of the second second	5
(q)	If $\sin(\alpha + i\beta) = x + iy$, then prove the	$\frac{x^2}{\cosh}$	$\frac{y^2}{^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$ and $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$.	5

2.

3.

UNIT-II

4. (a) If $\frac{-\pi}{4} \le x \le \frac{\pi}{4}$, then show that :

$$x = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x - \dots + (-1)^{n-1} \frac{1}{2n-1} \tan^{2n-1} x + \dots$$

- (b) Sum the series $\sinh x + \frac{1}{2!} \sinh 2x + \frac{1}{3!} \sinh 3x + \dots$
- 5. (p) Prove that $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$.
 - (q) Sum the series $\cos x \frac{1}{3!}\cos(x+2y) + \frac{1}{5!}\cos(x+4y) \dots$ 5

UNIT-III

- 6. (a) Show that quaternion product need not be commutative.
 - (b) Prove that for any p, $q \in H$, $(pq)^* = q^* p^*$.
- 7. (p) Show that for any p, $q \in H$, pq = qp iff \vec{p} and \vec{q} are parallel.
 - (q) Define inverse of a quaternion. Show that for any nonzero quaternion q, $q^{-1} = \frac{q^*}{N^2(q)}$.

UNIT-IV

- 8. (a) Prove that in a polynomial equation with real coefficients, complex roots occur in pairs. 5
 - (b) Solve the equation $x^3 15x = 126$ by Cardon's method.
- 9. (p) State Descarte's rule of signs and show that the equation $2x^7 x^4 + 4x^3 5 = 0$ has at least four complex roots.
 - (q) Find the condition that the roots of the equation $x^3 + px^2 + qx + r = 0$ are in A.P. 5

VTM-13323

2

(Contd.)

5

UNIT-V

10. (a) Define a row rank and column rank of a matrix. Show that row rank of a

matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$$
 is 2.

- (b) State Caley-Hamilton theorem and verify it for the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$. 1+4
- 11. (p) Define eigenvalues and eigenvectors of a matrix. If λ is an eigenvalue of matrix A, then show that λ^m is an eigenvalue of the matrix A^m, for any positive integral value of m.
 1+1+3
 - (q) Find the eigenvalues and the corresponding eigenvectors of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$. 5

First Semester B. Sc. (Part – I) Examination (New)

MATHEMATICS

Paper – I
(Algebra and Trigonometry)

P. Pages: 8

Time: Three Hours] [Max. Marks: 60

Note: (1) Question No. One is compulsory and attempt it once only.

- (2) Attempt One question from each unit.
- 1. Choose the correct alternative :-
 - (i) If $z = 1 + i \sqrt{3}$, then |Z| is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3.

_:

(ii) The value of $e^{-\pi i}$ is

- (a) 0
- (b) 1

AT-266 P.T.O.

- (c) i
- (d) 3.
- (iii) If $\theta n\pi = \tan\theta \frac{1}{3}\tan^3\theta + \frac{1}{5}\tan^5\theta$, then the value of n when θ lies between

$$\frac{7\pi}{4}$$
 and $\frac{9\pi}{4}$ is

- (a) n = 2
- (b) n = -2
- $(c) \cdot n = 3$
- (d) n = -3.
- (iv) The series $4 \tan^{-1} \frac{1}{5} \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{\pi}{4}$ is called
 - (a) Gregory's series
 - (b) Euler's series
 - (c) Rutherford's series
 - (d) Machin's series.
- (v) The norm of quaternion q = 5 + 2i 4j + 2k is
 - (a) 4
 - (b) 5

AT-266

		(c)	6	
		(d)	7.	
	(vi)	The	identity quaternion has	
		(a)	both real and vector part zero	
		(b)	both real and vector part one	
	•	(c)	real part one and vector part zero	
		(d)	none of these.	
	(vii)	The	equation $(x^2 + 5)^2 = 0$ must have	
		(a)	Two roots	
		(b)	Three roots	
		(c)	Four roots	
		(d)	Five roots.	
	(viii)		equation with integral coefficients having ot $-2 + \sqrt{3}$ is:	,
		(a)	$x^2 - 4x + 1 = 0$	
		(b)	$x^2 + 4x + 1 = 0$	
		(c)	$x^2 - 4x - 1 = 0$	
		(d)	$x^2 + 4x - 1 = 0.$	
20	(ix)	For	a symmetric matrix the eigen vectors are	
		(a)	equal	
AT-	266		3 P.T.O	

- (b) orthogonal
- (c) parallel
- (d) none of these.

1

- (x) Every square matrix A satisfies its own characteristic equation, This is:
 - (a) De Moivre's theorem
 - (b) Euler's theorem
 - (c) Cayley Hamilton theorem
 - (d) None of these.

1

UNIT-I

2. (a) Show that the continued product of four values

of
$$\left(\cos\frac{\pi}{3} - i \sin\frac{\pi}{3}\right)^{3/4}$$
 is unity.

3

(b) If $\sin (\alpha + i\beta) = x + iy$, prove that

(i)
$$\frac{x^2}{\cos h^2 \beta} + \frac{y^2}{\sin h^2 \beta} = 1$$

(ii)
$$\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$$

4

(c) Prove that $\sin h^{-1} x = \log \{x + \sqrt{x^2 + 1}\}.$

- 3. (p) State De-Moivre's theorem. Prove it for negative integers. 1 + 4
 - (q) Separate in to real and imaginary parts of $tan^{-1}(x + iy)$.

UNIT-II

4. (a) Prove that

$$\frac{\pi}{4} = 4 \left[\frac{1}{5} - \frac{1}{3} \cdot \frac{1}{5^3} + \frac{1}{5} \cdot \frac{1}{5^5} \dots \right] - \left[\frac{1}{23g} - \frac{1}{3} \cdot \frac{1}{23g^3} + \frac{1}{5} \cdot \frac{1}{23g^5} \right]$$

(b) Sum the series

$$a \cos x - \frac{1}{3} a^3 \cos (x + 2y) + \frac{1}{5} a^5 \cos (x + 2y) + \dots$$

5. (p) Prove that

$$\frac{\pi}{2\sqrt{3}} = \left[1 - \frac{1}{3^2} + \frac{1}{5} \cdot \frac{1}{3^2} - \frac{1}{7} \cdot \frac{1}{3^3} + \dots\right]$$

5

(q) Sum the series

$$\sin h x + \frac{1}{2!} \sin h2x + \frac{1}{3!} \sin h3x + \dots$$

UNIT-III

- 6. (a) If p = 2 i + 3j 4k and q = 5 + 2i 4j + 3k, then find the quaternion product pq. 5
 - (b) Show that quaternion product is associative.
- 7. (p) Prove that for any quaternion \overline{p} , $\overline{q} \in H$ (pq)* = q* p*.
 - (q) Define: Inverse of the quaternion. Show that for any non zero quaternion q.

$$q^{-1} = \frac{q^*}{N^2(q)}$$
 5

UNIT-IV

- 8. (a) Prove that an equation with real coefficient complex roots occur in pair. 4
 - (b) Find the condition that the roots of the polynomial equation $x^3 ax^2 + bx c = 0$ are in A. P.
 - (c) State Descarte's rule of signs and find the nature of the roots of equation $3x^4 + 12x^2 + 5x 4 = 0$.

- (p) Solve the equation $x^3 15x 126 = 0$ by 9. Cardan's method.
 - (q) Solve the equation $x^4 - 10x^3 + 35x^2 - 50x + 24 = 0.$

UNIT-V

Find the row rank and column-rank of matrix. 10. (a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$$

2 + 2

(b) Show that if B is an inverse matrix of the same order as A, then the matrices A and B⁻¹ AB have the same characteristic roots.

3

Verify Cayley - Hamilton theorem for the matrix.

$$M = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

11. (p) Find the eigen values and eigen vectors corresponding to the highest eigen value of

AT-266

matrix.

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

5

(q) Show that the eigen values of a Hermitian matrix are all real 5

B.Sc. (Part-I) Semester-I Examination **MATHEMATICS**

Paper—II

(Differential & Integral Calculus)

Time: Three Hours

[Maximum Marks: 60

Note :—(1) Question No. 1 is compulsory. Attempt once.

- (2) Attempt one question from each unit.
- Choose the correct alternatives (1 mark each):-

10

(i) Let
$$f(x) = \sin \frac{1}{x}, x \neq 0$$

= 0, x = 0

Then f(x) has discontinuity of at x = 0.

(a) Type-II

(b) Ordinary

(c) Removable

- (d) None of these
- (ii) Let f(x) = [x] = greatest positive integer not greater than x,

then
$$\lim_{x\to 2} f(x) =$$

(a) 0

(b) 1

(c) 2

- (d) does not exist
- (iii) If $y = (2x 3)^4$ then $y_3 = ____.$
 - (a) 192

(b) (2x - 3)

(c) 192(2x - 3)

- (d) 0
- (iv) A function f(x) has a derivative at $x = x_0$ iff ______
 - (a) $f'(x_0^+) = f'(x_0^-)$
- (b) $f'(x_0^+) \neq f'(x_0^-)$
- (c) $f'(x_0^+) = f'(x_0^-) \neq f'(x_0)$ (d) None of these
- (v) If a real function f defined on [a, b] is:
 - (1) Continuous on [a, b]
 - (2) Differentiable on (a, b)

then there is at least one point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. It is statement of _____.

- Rolle's theorem (a)
- (b) Lagrange's mean value theorem
- (c) Cauchy mean value theorem
- (d) None of these
- (vi) The series of $f(x) = \sin x$ is:
 - (a) $x \frac{x^3}{3!} + \frac{x^5}{5!} \dots$
- (b) $1-\frac{x^2}{2!}+\frac{x^4}{4!}-\dots$
- (c) $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$ (d) $x+\frac{x^3}{3!}+\frac{x^5}{5!}+\dots$

		(vii) If $f(x, y) = x^2 + 2xy + y^2$ then $f = \frac{1}{2}$	
		(vii) If $f(x, y) = x^2 + 2xy + y^2$ then $f_{xy} = $	
		(c) 3 (d) 4	
		(viii) If $f(x, y) = \frac{1}{x} + \frac{\log x - \log y + 7}{y}$ then $f(x, y)$ is homogeneous of degree	
		(a) 1 (b) -1	
		(c) 2 (d) -2	
		(ix) Let $f(x)$ be continuous and non-negative on [a, b]. Then the area A bounded by the curve $y = f(x)$, the x-axis and two ordinates $x = a$, $x = b$ is $A = $	ve
		(a) $\int_{b}^{a} y dx$ (b) $\int_{a}^{b} y dx$	
		(c) $\int_a^b x dy$ (d) $\int_b^a x dy$	
		(x) The process of finding the length of arc of a curve by definite integral is known as:	
		(a) Quadrature (b) Unification	
		(c) Rectification (d) None of these	
		UNITI	
2.	(a)	If $\lim_{x\to x_0} f(x) = \ell$, then f is bounded on some deleted neighbourhood of x_0 , prove this.	3
2	(b)	Show that $\lim_{x\to 1} \frac{2x^3 - x^2 - 8x + 7}{x - 1} = -4$.	3
	(c)	Discuss the continuity of the function $f(x) = (x - a) \sin \frac{1}{(x - a)}$, $x \ne a$	
		$= 0 , \mathbf{x} = \mathbf{a}.$	
		at point $x = a$.	4
3.	(p)	If $\lim_{x\to x_0} f(x)$ exists, then it is unique. Prove this.	4
	(q)	Show that $\lim_{x\to 0} f(x)$ does not exist, if $f(x) = \begin{cases} x /x & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$.	3
	(r)	Let $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, show that $f(x)$ has removable discontinuity at $x = 0$.	3
		UNITII	
4.	(a)	Show that $f(x) = x^2$ is differentiable in $0 \le x \le 2$.	3
	(b)	Find y_n for $y = tan^{-1} \left(\frac{x}{a}\right)$.	3
	(c)	If $y = x^n \cdot \log x$, then show that $y_{n-1} = \frac{n!}{x}$.	4

2

(Contd.)

WPZ-8233

			[1 x	1		
5.	(P)	Prove that	$\lim_{x \to 1} \left[\frac{1}{\log x} - \frac{x}{x - 1} \right]$	$=-\frac{1}{2}$.		3

(q) If
$$y = \cos x \cdot \cos 2x \cdot \cos 3x$$
, find y_n .

(r) If
$$y = e^{a \sin^{-1} x}$$
, prove that :
 $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+a^2)y_n = 0.$

UNIT-III

- 6. (a) If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is a point $c \in (a, b)$ such that $\frac{f(b) f(a)}{g(b) g(a)} = \frac{f'(c)}{g'(c)}$, where $g(a) \neq g(b)$ and f'(x), g'(x) are not simultaneously zero.
 - (b) Verify Lagrange's mean value theorem for $f(x) = \log x$ in [1, e].
 - (c) Expand sin x in power of $(x \frac{1}{2}\pi)$.
- 7. (p) Verify the truth of Rolle's theorem for $f(x) = x^2 + x 6$ in [-3, 2].
 - (q) Expand $\tan^{-1}x$ in powers of $\left(x-\frac{\pi}{4}\right)$.
 - (r) If f is differentiable on (a, b) and $f'(x) \ge 0$, $\forall x \in (a, b)$ then prove that f is monotone increasing on (a, b).

UNIT-IV

8. (a) If
$$u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
, $x^2 + y^2 + z^2 \neq 0$, show that $u_{xx} + u_{yy} + u_{zz} = 0$.

- (b) If u = f(x, y) is a homogeneous differentiable function of degree n in x, y then $xu_x + yu_y = nu$. Prove this.
- (c) If Z=f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$, then show that :

$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$$

9. (p) If
$$u = f(x + ay) + g(x - ay)$$
, show that $u_{yy} = a^2 u_{xx}$.

(q) If
$$u = \csc^{-1}\sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$$
, then show that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{2}\right)$

(r) If
$$z = f(x^2 - y^2)$$
, show that $yz_x + xz_y = 0$.

UNIT-V

- 10. (a) Find the value $\int_{0}^{1} \frac{1-4x+2x^{2}}{\sqrt{2x-x^{2}}} dx$.
 - (b) Prove that $\int\limits_{0}^{\pi/2} \sin^{n} x \ dx = \int\limits_{0}^{\pi/2} \cos^{n} x \ dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \ n \ is \ even.$

$$=\frac{n-1}{n}\frac{n-3}{n-2}....\frac{2}{3}$$
, n is odd.

- (c) Calculate the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 11. (p) If $I_n = \int \sin^n x \, dx$ then $I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}$.
 - (q) Find the length of the arc of the equiangular spiral $r = ae^{\theta \cot \alpha}$ between the points for which the radii vectors are r_1 and r_2 .
 - (r) Integrate $\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}} dx$.

[Maximum Marks: 60

B.Sc. (Part-I) Semester-I Examination

(New Course)

1S: MATHEMATICS

Paper—II

(Differential & Integral Calculus)

Time: Three Hours]

Note:—(1) Question No. 1 is compulsory.

		(2)	Attempt ONE question from each	ch un	it.		
	Cho	ose 1	the correct alternatives (1 mark e	ach)	:		10
	(i)	If l	$\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$ and $f(x)$ is def	ined	at x	= a then which type of discontinu	uity
		occi	ırs :				
		(a)	First kind		(b)	Second kind	
		(c)	Removable		(d)	None of these	
	(ii)	Whi	ch of the following function is c	ontin	uous	s at origin ?	
		(a)	$f(x) = cos(1/x)$, when $x \neq 0$ and	f(0)	= 0		
		(b)	$f(x) = \sin(1/x)$, when $x \neq 0$ and	f(0)	= 0		
11		(c)	$f(x) = x + \sin(1/x)$, when $x \neq 0$	and	f(0)	= 1	
		(d)	$f(x) = x \cdot \sin(1/x)$, when $x \neq 0$	and f	(0)	= 1	
	(iii)	If y	$= e^{-3x}$ then $y_{11} = ?$				
		(a)	$-3^{11}e^{-3x}$		(b)	$3^{11}e^{-3x}$	
		(c)	$-e^{-3x}$	1	(d)	None of these	
	(iv)	If f(x) is defined and continuous on [a, b];	der	ivable on (a, b) then there exist at le	east
		one	point $c \in (a, b)$ such that $f(b)$ -	f(a)	= (b	(-a) f'(c) which is the statement of	of:
		(a)	Lagranges mean value theorem		(b)	Rolle's theorem	
		(c)	Cauchy's mean value theorem		(d)	Intermediate value theorem	
OX	-352	254		1		(Cor	ntd.)

- (v) If $f(x) = x^2 + x 6$; $x \in [-3, 2]$ then the value of 'c' by Rolle's theorem is :
 - (a) $-\frac{1}{2}$

(b) $\frac{1}{2}$

(c) 0

- (d) 1
- (vi) For $f(x) = x^2$; $g(x) = x^3$ in [1, 3] then the value of 'c' by Cauchy's mean value theorem is:
 - (a) $\frac{6}{13}$

(b) $\frac{13}{6}$

(c) 0

- (d) 1
- (vii) If $f(x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ then f(x) is :
 - (a) log(1 + x)

(b) sin x

(c) cos x

(d) tan-1x

- (viii) The value of $\lim_{x\to 0} (x^x)$ is:
 - (a) e

(b) 1/e

(c) 0

- (d) 1
- (ix) What is the value of $\lim_{x\to\infty} \left[\frac{2^{n+1} + 3^{n+1}}{2^n + 3^n} \right]$?
 - (a) $\frac{1}{3}$

(b) 1

(c) 3

- (d) 0
- (x) The area bounded by the curve x = g(y); y-axis and y = a, y = b is :
 - (a) $\int_a^b y dx$

(b) $\int_a^b x dy$

(c) $\int_{a}^{b} y^2 dx$

(d) None of these

UNIT-I

- 2. (a) Prove that limit of function, if it exist, then it is unique.
 - (b) Show that the function $f(x) = x \cdot \sin\left(\frac{1}{x}\right)$; $x \ne 0$ is continuous at x = 0.
 - (c) If f(x) is defined and continuous in [a, b] then prove that f(x) attain every value between its bounds.
- 3. (d) Prove that limit of product of two functions is equal to the product of their limits. 4
 - (e) Show that the function $f(x) = (1+2x)^{1/x}$; $x \ne 0$ is continuous at x = 0. $= e^2$; x = 0
 - (f) Using $\in -\delta$ definition, prove that :

$$\lim_{x \to 3} \left(\frac{1}{x} \right) = \frac{1}{3}.$$

UNIT-II

- 4. (a) State and prove Leibnitz theorem.
 - (b) Evaluate $\lim_{x \to 0} \left[\frac{e^x e^{-x} 2\log(1+x)}{x \cdot \sin x} \right].$
 - (c) Find y_n , if $y = (ax + b)^{-1}$.
- 5. (d) If $y = (x + \sqrt{x^2 1})^m$ then prove that $(x^2 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0$.
 - (e) If $y = \frac{x^3}{x^2 1}$ then find (y_n) at x = 0.
 - (f) Prove that $\lim_{x \to \infty} \left[\frac{\pi}{2} \tan^{-1} x \right]^{1/x} = 1$.

(Contd.)

UNIT-III

6. (a) State and prove Lagranges mean value theorem.

- 5
- (b) Verify Cauchy's mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].
- 3

(c) Expand e^x upto first four terms at x = 0.

- 2
- 7. (d) If f(x) and g(x) are continuous real valued functions on [a, b]; which are differentiable in (a, b) then prove that there exist at least one point 'c' in (a, b) such that:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}; \text{ where } g(a) \neq g(b).$$

- (e) Expand $2x^3 + 7x^2 + x 1$ in powers of (x 2).
- (f) Verify Rolle's theorem for $f(x) = \log \left[\frac{x^2 + ab}{(a+b)x} \right]$ in [a, b]; $x \neq 0$.

UNIT-IV

- 8. (a) State and prove Euler's theorem for function of two variables.
- 4

3

- (b) If $u = \frac{x^2 + y^2}{x + y}$ then prove that $\left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right)^2 = 4\left(1 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}\right)$.
- (c) If $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$; $x^2 + y^2 + z^2 \neq 0$; then show that $u_{xx} + u_{yy} + u_{zz} = 0$.
- 9. (d) If F(u) be a homogeneous function of degree 'n' in x and y, where u is a function of x, y then prove that:
 - (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = n \frac{F(u)}{F'(u)}$ and
 - (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = G(u)[G'(u) 1]$

where G(u) = nF(u) / F'(u).

(e) If $u = log(x^3 + y^3 + z^3 - 3xyz)$ then prove that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$$
 and

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{9}{(x+y+z)^2}.$$

(f) If
$$f(x, y) = 2x^3y^2 - 3xy^2 + x - 2y$$
 then prove that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

UNIT-V

10. (a) Prove that:

$$\int \cos^{m} x \cdot \sin^{n} x \, dx = \frac{\cos^{m-1} x \cdot \sin^{n+1} x}{m+n} + \frac{m-1}{m+1} \int \cos^{m-2} x \cdot \sin^{n} x \, dx.$$

(b) Evaluate:

$$\int_0^1 \frac{1 - 4x + 2x^2}{\sqrt{2x - x^2}} \, dx \, .$$

- (c) Prove that the area of an ellipse $b^2x^2 + y^2a^2 = a^2b^2$ is πab .
- 11. (d) If $\phi(n) = \int_0^{\pi/4} \tan^n x \, dx$ then prove that $\phi(n) + \phi(n-2) = \frac{1}{n-1}$ and hence find the value of $\phi(5)$.

(e) Evaluate
$$\int \frac{x^2 + 2x + 3}{\sqrt{x^2 + x + 1}} dx$$
.

(f) Find the length of the arc of the curve $y = log\left(\frac{e^x - 1}{e^x + 1}\right)$ from x = 1 to x = 2.

[Maximum Marks: 60

B.Sc. (Part—I) Semester—I Examination

therein then geometrically, there exists at least one point is on the curve between

MATHEMATICS

Paper-II

(Differential & Integral Calculus)

N.B.:—(1) Question No. 1 is compulsory. Attempt once.

(2) Attempt ONE question from each unit.

1. Choose the correct alternatives (1 mark each) :-

10

(i) If the function f(x) is differentiable at $x = x_0$, then it is:

(a) Not defined at $x = x_0$

Time: Three Hours]

(b) Continuous at $x = x_0$

(c) Not continuous at $x = x_0$

(d) None of these

(ii) The function f(x) has simple discontinuity if:

(a) f(x+), f(x-) do not exist

(b) f(x), f(x+) f(x-) exist but not equal

(c) $f(x^+) = f(x^-) \neq f(x)$

(d) $f(x^+) \neq f(x^-)$

(iii) If $y = \sin (ax + b)$ then y_n is:

(a)
$$a^n \cos (ax + b + \frac{\pi}{2})$$

(b)
$$a^n \sin (ax + b + \frac{\pi}{2})$$

(c)
$$a^n \sin(ax + b + \frac{n\pi}{2})$$

(d)
$$a^n \sin (ax + b - \frac{n\pi}{2})$$

VTM-13324

(Contd.)

- (iv) The graph of function y = f(x), $\neq x \in [a, b]$ which satisfies all conditions of Rolle's theorem then geometrically, there exists at least one point c on the curve between x = a and x = b at which the tangent to the curve is :
 - (a) Parallel to y-axis

(b) Parallel to x-axis

(c) Perpendicular to x-axis

- Perpendicular to y-axis (d)
- (v) The expansion of the function ex is:

(a)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

(b) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$

(c)
$$1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$$
 (d) $x-\frac{x^3}{3!}+\frac{x^5}{5!}+\dots$

- (vi) The value of ∫log x dx is:
 - (a) $\log x + k$

(b) $x \log x - x + k$

(c) $x \log x + x + k$

(d) $\log x - x + k$

- (vii) The value of $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$ is:
 - (a) $e^{\frac{1}{2}}$

(b) $e^{-\frac{1}{2}}$

(c) 0

- (d) 1
- (viii) The degree of homogenous function, $f(x, y) = \sqrt{\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}}}$ is:
 - (a) $\frac{1}{3}$

(b) $\frac{1}{6}$

(c) $\frac{1}{12}$

(d) $\frac{1}{2}$

(ix) If $I_n = \int \sec^n dx$ then the reduction formula for I_n is:

(a)
$$I_n = -\frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} I_{n-2}$$

(b)
$$I_n = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} I_{n-2}$$

(c)
$$I_n = \frac{1}{n-1} \sec^{n-1} x \tan x - \frac{n-2}{n-1} I_{n-2}$$

(d)
$$I_n = \frac{1}{n+1} \sec^{n+1} x \tan x - \frac{n-2}{n-1} I_{n-2}$$

(x) Let f(x) be continuous and non-negative on [a, b]. Then the area A bounded by curve y = f(x), the x-axis and two ordinates x = a, x = b is:

(a)
$$A = \int_{a}^{b} x \, dx$$

(b)
$$A = \int_{a}^{b} y \, dx$$

(c)
$$\int_{b}^{a} y.dx$$

(d)
$$\int_{-a}^{-b} f(x) dx$$

UNIT-I

2. (a) Prove that if $\lim_{x\to x_0} f(x)$ exists, then it is unique.

(b) Using the $\in -\delta$ definition, show that $\lim_{x\to 2} x^2 = 4$.

(c) Show that
$$f(x) = \frac{1}{1 - e^{\frac{1}{x}}}$$
 has simple discontinuity at $x = 0$.

- (a) Prove that if f(x) is defined and continuous in [a, b], then it attains its bounds at least once in [a, b].
 - (b) Using $\in -\delta$ definition, prove that $f(x) = \sin x$ is continuous for all real values of x.
 - (c) Prove that $\lim_{x\to 2} f(x) = 7$, where f(x) = 2x + 3, $\forall x \in [0, 5]$.

UNIT-II

- 4. (a) Prove that: If f(x) is differentiable at $x = x_0$, then it is continuous at $x = x_0$. Is converse of this statement true? Justify.
 - (b) Find the nth differential coefficient of $\frac{1}{6x^2 5x + 1}$.
 - (c) If $y = x^n \log x$, then show that $y_{n+1} = \frac{n!}{x}$.
- 5. (a) State and prove Leibnitz's theorem.
 - (b) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 5x}{\tan x}$.
 - (c) Prove that $\lim_{x \to 1} \left[\frac{1}{\log x} \frac{x}{x-1} \right] = -\frac{1}{2}$.

UNIT-III

- 6. (a) State and prove Lagrange's mean value theorem.
 - (b) Verify Cauchy mean value theorem for the functions:

$$f(x) = e^x \text{ and } g(x) = e^{-x} \text{ in [a, b]}.$$

(c) Expand $3x^3 + 4x^2 + 5x - 3$ about the point x = 1 by Taylor's theorem.

7. (a) State and prove Rolle's theorem.

(b) Expand $2x^3 + 7x^2 + x - 1$ in powers of (x - 2).

Ųģ

4

(c) By using Lagrange's mean value theorem, show that $1 + x < e^x < 1 + xe^x$, $\forall x > 0$.

UNIT-IV

8. (a) Let F(u) be a homogenous function of degree n in x and y, where u is function of x and y. Then prove that:

(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{nF(u)}{F'(u)} = G(u)$ and

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = G(u)[G'(u) - 1].$$

(b) If $u = \frac{x^2 + y^2}{x + y}$, prove that $(u_x - u_y)^2 = 4[1 - u_x - u_y]$.

- (c) Verify Euler's theorem on homogeneous function for $u = log \left[\frac{x+y}{x-y} \right]$.
- 9. (a) If u = F(x y, y z, z x), then prove that:

$$u_x + u_y + u_z = 0.$$

(b) If $u = \sin^{-1}\left\{\frac{x^2 + y^2}{x + y}\right\}$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$.

(c) Show that : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$, if $u = 3(ax + by + cz)^2 - (x^2 + y^2 + z^2)$ and $a^2 + b^2 + c^2 = 1$.

UNIT—V

- 10. (a) Prove that $\int \cot^n x \, dx = -\frac{1}{n-1} \cot^{n-1} x I_{n-2}$. Hence evaluate $\int \cot^5 x \, dx$.
 - (b) Calculate the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (c) Evaluate: $\int \frac{2x^2 + 3x + 7}{\sqrt{x^2 + x + 1}} dx$.
- 11. (a) Prove that : $\int \sin^m x \cos^n x \, dx = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} \int \sin^m x \cos^{n-2} x \, dx.$
 - (b) Find the area between the curve $y = x^3 3x^2 + 2x$ and the x-axis.
 - (c) Find the length of the arc of the parabola $x^2 = 4ay$ from the vertex to an extremity of the latus rectum.

First Semester B. Sc. (Part - I) Examination

MATHEMATICS

Paper - II
(Differential and Integral Calculus)

P. Pages: 8

Time: Three Hours] [Max. Marks: 60

Note: (1) Question No. **One** is compuslsory attempt once.

- (2) Attempt One question from ech units.
- 1. Choose the correct alternatives (1 mark each):-

(i)
$$\lim_{x \to 0} \frac{1}{x} \cos \frac{1}{x} = ----$$

- (a) Limit exist.
- (b) Limit does not exist.
- (c) Equal to zero.
- (d) None of these.
- (ii) The function f is defined by $f(x) = \tan x$ is discontinuous at ———

(a)
$$x = \frac{\pi}{2}$$
 only

(b)
$$x = n\pi$$
 , $\forall n \in \pi$

(c)
$$x = -\frac{n\pi}{2}$$
, $\forall n \in N$

(d)
$$x = (2n+1) \frac{\pi}{2}$$
, $n = 0, 1, 2, ---$

- (iii) The modulus function f(x) = |x|, $\forall x \in R$ is ——————— at x = 0
 - (a) Continuous but not derivable.
 - (b) Derivable but not continous.
 - (c) Continuous and derivable.
 - (d) None of these.

(iv)
$$\lim_{x\to 0} \frac{\sin x}{x} = ----$$

(a) 0

(b) 1

(c) ∞

- (d) None of these
- (v) Let f be differentiable function on (a, b). Then which of the following statement is correct:
 - (a) $f'(x) \ge 0, \forall x \in (a,b) \Longrightarrow f$ is monotone decreasing.
 - (b) $f'(x) = 0, \forall x \in (a,b) \Longrightarrow f$ is not constant.

- (c) $f'(x) \le 0, \forall x \in (a,b) \Longrightarrow f$ is monotone decreasing
- (d) $f'(x) \le 0 \ \forall x \in (a,b) \Longrightarrow f$ is not decreasing.

(vi) The series
$$f(x) = f(0) + \frac{x}{1!} f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^{n-1}}{(n-1)!} f^{(n-1)}$$
 (0) + ---- is called-----

- (a) Taylor's series.
- (b) Maclaurin's series.
- (c) Lagranges series.
- (d) None of these.

(vii) If
$$u = \frac{x^4 - y^4}{x - y}$$
, $x \neq y$ then $xu_x + yu_y = \cdots$

(a) 1.u

(b) 4u

(c) 3u

(d) None of these

(viii) Let
$$f(x, y) = 2x^3y^2 - 3xy^2 + x-2y$$
 then f_{yy}

- (a) $4x^3-6x$
- (b) $12x^2-6y$

(c) 4y-6

(d) None of these

(ix) The area of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is

$$\int_{0}^{\pi/8} \cos^3 4x \, dx = -$$

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{1}{6}$$

(d)
$$\frac{1}{8}$$

10

UNIT I

(a) Let F(x) and g(x) be defined at all points of an interval [a, b] except possibly at x₀∈[a, b]. If lim F(x) = l, lim g(x) = m, then prove that x→x₀ x→x₀
lim [f(x) + g(x)] = l+m

(b) Show that
$$f(x) = \begin{cases} \frac{e^{1/x}}{1 + e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

has a simple discontinuity at x = 0.

(c) Prove that $F(x) = x^2$ is continuous at x = 3.

3

- 3. (P) Show that the function $f(x) = \begin{cases} (1+2x)^{1/x} & x \neq 0 \\ e^2, & x = 0 \end{cases}$ is continuous at x = 0
 - (q) Prove that $\lim_{x\to a} \sin x = \sin a$ by $\in -\delta$ definition.
 - (r) If a function f is continuous on the closed interval I = [a, b] and f(a) ≠ f(b), then f assumes every value between f(a) and f(b).
 3

UNIT II

- (a) Justify, by an example, that continuity of a function at a point necessarily not imply the derivability at that point.
 - (b) If $y = \frac{1}{x^2 + a^2}$, then find y_n .
 - (c) Evaluate $\lim_{x\to 0} (\cos x)^{1/x^2}$ 3
- 5. (p) Find the right hand and left hand derivative of f(x) = |x| at x = 0 3
 - (q) If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$ and $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

AT-267 5 P.T.O.

(r) Evaluate
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\tan 5x}{\tan x} \right)$$

3

UNIT III

6. (a) State and prove Rolle's mean value theorem. 4

- Verify Cauchy mean value theorem for f(x) =(b) $\cos x g(x) = \sin x \text{ in } [0, \pi/2]$
- Show that: (c) $log(x+h) = logh + \frac{x}{h} - \frac{x^2}{2h^2} + \frac{x^3}{3h^3} - \cdots$
- (p) Let f be differentiable on (a, b) then Prove that $f(x) \ge 0 \ \forall \ x \in (a, b) \Longrightarrow f$ is monotone increasing.
 - (q) Expand $2x^3 + 7x^2 + x 1$ in power of (x-2).

State and prove Lagrange's mean value theorem.

AT - 267

UNIT IV

8. (a) If
$$u = \frac{x^2 + y^2}{x + y}$$
 Prove that
$$\left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)^2 = 4\left(1 - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)^2$$

(b) Let F(u) be a hamogeneous function of degree n in x and y, where u is a function of x, y. Then:

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{nF(u)}{F'(u)} \text{ and}$$

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = G(u)[G'(u) - 1]$$

where $G(u) = \frac{nF(u)}{F'(u)}$ and suitable condition

of differentiability.

(c) If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, show that $u_x + u_y + u_z = \frac{3}{x + y + z}$

- 9. (p) If Z = f(xy), show that $xz_x yz_y = 0$
 - (q) Verify Euler's theorem on homogeneous functions for $3x^2yz + 5xy^2z + 4z^4$.

(r) If
$$u = \frac{e^{x+y+z}}{e^x+e^y+e^z}$$
 then show that $u_x + u_y + u_z = 2u$

UNIT V

- 10. (a) If $I_n = \int \sec^n x \, dx$, then prove that $I_n = \frac{1}{n-1} \sec^{n-2} x \cdot \tan x + \frac{n-2}{n-1} I_{n-2}$
 - (b) Find the area between the curve $y = x^3-3x^2+2x$ and the x-axis. 3π
 - (c) Prove that $\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx = \frac{3\pi}{128}$
- 11. (p) If $\phi(n) = \int_0^{\infty} \tan^n x \, dx$, then show that $\phi(n) + \phi(n-2) = \frac{1}{n-1}$ and find the value of $\phi(5)$
 - (q) Show that in the catenary $y = C \cosh \frac{x}{C}$, the length of the arc from the vertex to any print is given by $S = C \sinh \frac{x}{a}$.
 - (r) Integrate $\int \frac{2x^2 x + 18}{\sqrt{x^2 2x + 17}} dx$

3